Analytical and Bioanalytical Chemistry

, Volume 405, Issue 9, pp 2889–2899 | Cite as

Sulphur tracer experiments in laboratory animals using 34S-labelled yeast

  • J. Giner Martínez-Sierra
  • F. Moreno Sanz
  • P. Herrero Espílez
  • J. M. Marchante Gayón
  • J. Rodríguez Fernández
  • J. I. García Alonso
Original Paper

Abstract

We have evaluated the use of 34S-labelled yeast to perform sulphur metabolic tracer experiments in laboratory animals. The proof of principle work included the selection of the culture conditions for the preparation of sulphur labelled yeast, the study of the suitability of this labelled yeast as sulphur source for tracer studies using in vitro gastrointestinal digestion and the administration of the 34S-labelled yeast to laboratory animals to follow the fate and distribution of 34S in the organism. For in vitro gastrointestinal digestion, the combination of sodium dodecyl sulphate-polyacrylamide gel electrophoresis and high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) showed that labelled methionine, cysteine and other low molecular weight sulphur-containing biomolecules were the major components in the digested extracts of the labelled yeast. Next, in vivo kinetic experiments were performed in healthy Wistar rats after the oral administration of 34S-labelled yeast. The isotopic composition of total sulphur in tissues, urine and faeces was measured by double-focusing inductively coupled plasma mass spectrometry after microwave digestion. It was observed that measurable isotopic enrichments were detected in all samples. Finally, initial investigations on sulphur isotopic composition of serum and urine samples by HPLC-ICP-MS have been carried out. For serum samples, no conclusive data were obtained. Interestingly, chromatographic analysis of urine samples showed differential isotope enrichment for several sulphur-containing biomolecules.

Keywords

Sulphur metabolism Metabolic tracer Sulphur-labelled yeast HPLC-ICP-MS Urine 

Supplementary material

216_2012_6420_MOESM1_ESM.pdf (629 kb)
ESM 1(PDF 628 kb)

References

  1. 1.
    Villar-Garea A, Griese M, Imhof A (2007) Biomarker discovery from body fluids using mass spectrometry. J Chromatogr B 849:105–114CrossRefGoogle Scholar
  2. 2.
    Apweiler R, Aslanidis C, Deufel T, Gerstner A, Hansen J, Hochstrasser D et al (2009) Approaching clinical proteomics: current state and future fields of application in fluid proteomics. Clin Chem Lab Med 47:724–744CrossRefGoogle Scholar
  3. 3.
    Silberring J, Ciborowski P (2010) Biomarker discovery and clinical proteomics. TRAC Trends Anal Chem 29:128–140CrossRefGoogle Scholar
  4. 4.
    Srinivas PR, Srivastava S, Hanash S, Wright GL (2001) Proteomics in early detection of cancer. Clin Chem 47:1901–1911Google Scholar
  5. 5.
    Shau H, Chandler GS, Whitelegge JP, Gornbein JA, Faull KF, Chang HR (2003) Proteomic profiling of cancer biomarkers. Brief Funct Genom Proteomics 2:147–158CrossRefGoogle Scholar
  6. 6.
    Fliser D, Novak J, Thongboonkerd V, Argilés A, Jankowski V, Girolami MA, Jankowski J, Mischak H (2007) Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 18:1057–1071CrossRefGoogle Scholar
  7. 7.
    Ru QC, Katenhusen RA, Zhu LA, Silberman J, Yang S, Orchard TJ, Brzeski H, Liebman M, Ellsworth DL (2006) Proteomic profiling of human urine using multi-dimensional protein identification technology. J Chromatogr A 1111:166–174CrossRefGoogle Scholar
  8. 8.
    Wittke S, Fliser D, Haubitz M, Bartel S, Krebs R, Hausadel F, Hillmann M, Golovko I, Koester P, Haller H, Kaiser T, Mischak H, Weissinger EM (2003) Determination of peptides and proteins in human urine with capillary electrophoresis–mass spectrometry, a suitable tool for the establishment of new diagnostic markers. J Chromatogr A 1013:173–181CrossRefGoogle Scholar
  9. 9.
    Haubitz M, Wittke S, Weissinger EM, Walden M, Rupprecht HD, Floege J, Haller H, Mischak H (2005) Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int 67:2313–2320CrossRefGoogle Scholar
  10. 10.
    Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I, Mischak H, Frierson HF (2006) Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol 7:230–240CrossRefGoogle Scholar
  11. 11.
    Kaiser T, Kamal H, Rank A, Kolb HJ, Holler E, Ganser A, Hertenstein B, Mischak H, Weissinger EM (2004) Proteomics applied to the clinical follow-up of patients after allogeneic hematopoietic stem cell transplantation. Blood 104:340–349CrossRefGoogle Scholar
  12. 12.
    Wind M, Wegener A, Eisenmenger A, Kellner R, Lehmann WD (2003) Sulfur as the key element for quantitative protein analysis by capillary liquid chromatography coupled to element mass spectrometry. Angew Chem Int Ed 42:3425–3427CrossRefGoogle Scholar
  13. 13.
    Prange A, Profrock D (2008) Chemical labels and natural element tags for the quantitative analysis of bio-molecules. J Anal At Spectrom 23:432–459CrossRefGoogle Scholar
  14. 14.
    Rappel C, Schaumlöffel D (2008) The role of sulfur and sulfur isotope dilution analysis in quantitative protein analysis. Anal Bioanal Chem 390:605–615CrossRefGoogle Scholar
  15. 15.
    Anderson JW (1980) Assimilation of inorganic sulfate into cysteine. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 5. Academic, New York, p 203Google Scholar
  16. 16.
    Porro D, Sauer M, Branduardi P, Mattanovich D (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259CrossRefGoogle Scholar
  17. 17.
    Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532Google Scholar
  18. 18.
    Barnett JA (2003) Beginnings of microbiology and biochemistry: the contribution of yeast research. Microbiology 149:557–567CrossRefGoogle Scholar
  19. 19.
    Giner Martínez-Sierra J, Moreno Sanz F, Herrero Espílez P, Marchante Gayón JM, García Alonso JI (2007) Biosynthesis of sulfur-34 labelled yeast and its characterisation by multicollector-ICP-MS. J Anal At Spectrom 22:1105–1112CrossRefGoogle Scholar
  20. 20.
    Rodríguez-González P, Ruiz Encinar J, García Alonso JI, Sanz-Medel A (2005) Monitoring the degradation and solubilisation of butyltin compounds during in vitro gastrointestinal digestion using “triple spike” isotope dilution GC-ICP-MS. Anal Bioanal Chem 381:380–387CrossRefGoogle Scholar
  21. 21.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  22. 22.
    Rodríguez-González P, García Alonso JI (2010) Recent advances in isotope dilution analysis for elemental speciation. J Anal At Spectrom 25:239–259CrossRefGoogle Scholar
  23. 23.
    Giner Martínez-Sierra J, Moreno Sanz F, Herrero Espílez P, Santamaria-Fernandez R, Marchante Gayón JM, García Alonso JI (2010) Evaluation of different analytical strategies for the quantification of sulfur-containing biomolecules by HPLC-ICP-MS: application to the characterisation of 34S-labelled yeast. J Anal At Spectrom 25:989–997CrossRefGoogle Scholar
  24. 24.
    Rodríguez-González P, Marchante-Gayón JM, García Alonso JI, Sanz-Medel A (2005) Isotope dilution analysis for elemental speciation: a tutorial review. Spectrochim Acta B 60:151–207CrossRefGoogle Scholar
  25. 25.
    Giner Martínez-Sierra J, Santamaria-Fernandez R, Hearn R, Marchante Gayón JM, García Alonso JI (2010) Development of a direct procedure for the measurement of sulfur isotope variability in beers by MC-ICP-MS. J Agric Food Chem 58:4043–4050CrossRefGoogle Scholar
  26. 26.
    Santamaria-Fernandez R, Giner Martínez-Sierra J, Marchante Gayón JM, García Alonso JI, Hearn R (2009) Measurement of longitudinal sulfur isotopic variations by laser ablation MC-ICP-MS in single human hair strands. Anal Bioanal Chem 394:225–233CrossRefGoogle Scholar
  27. 27.
    Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD (2003) Characterisation of the low molecular weight human serum proteome. Mol Cell Proteomics 2:1096–1103CrossRefGoogle Scholar
  28. 28.
    Shou M, Conrads TP, Veenstra TD (2005) Proteomic approaches to biomarker detection. Brief Funct Genom Proteomics 4:69–75CrossRefGoogle Scholar
  29. 29.
    Luque-Garcia JL, Neubert TA (2007) Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J Chromatogr A 1153:259–276CrossRefGoogle Scholar
  30. 30.
    Martorella A, Robbins R (2007) Serum peptide profiling: identifying novel cancer biomarkers for early disease detection. Acta Biomed 78:123–128Google Scholar
  31. 31.
    Linke T, Doraiswamy S, Harrison EH (2007) Rat plasma proteomics: effects of abundant protein depletion on proteomic analysis. J Chromatogr B 849:273–281CrossRefGoogle Scholar
  32. 32.
    Khan A, Packer NH (2006) Simple urinary sample preparation for proteomic analysis. J Proteome Res 5:2824–2838CrossRefGoogle Scholar
  33. 33.
    Magagnotti C, Fermo I, Carletti RM, Ferrari M, Bachi A (2010) Comparison of different depletion strategies for improving resolution of the human urine proteome. Clin Chem Lab Med 48:531–535CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. Giner Martínez-Sierra
    • 1
  • F. Moreno Sanz
    • 2
  • P. Herrero Espílez
    • 2
  • J. M. Marchante Gayón
    • 1
  • J. Rodríguez Fernández
    • 3
  • J. I. García Alonso
    • 1
  1. 1.Department of Physical and Analytical ChemistryUniversity of OviedoOviedoSpain
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of OviedoOviedoSpain
  3. 3.Innovative Solutions in Chemistry, Edificio Científico-TecnológicoCampus de “El Cristo”OviedoSpain

Personalised recommendations