Analytical and Bioanalytical Chemistry

, Volume 404, Issue 8, pp 2363–2368 | Cite as

Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system

  • Zsolt Wagner
  • Tamás Tábi
  • Tamás Jakó
  • Gergely Zachar
  • András Csillag
  • Éva SzökőEmail author
Original Paper


Chiral capillary electrophoresis method has been developed to separate aspartate and glutamate enantiomers to investigate the putative neuromodulator function of d-Asp in the central nervous system. To achieve appropriate detection sensitivity fluorescent derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole and laser-induced fluorescence detection was applied. Although, simultaneous baseline separation of the two enantiomer pairs could be achieved by using 3 mM 6-monodeoxy-6-mono(3-hydroxy)propylamino-β-cyclodextrin (HPA-β-CD), further improvement of the chemical selectivity was required because of the high excess of l-enantiomers in real samples to be analyzed. The system selectivity was fine-tuned by combination of 8 mM heptakis(2,6-di-O-methyl)-β-cyclodextrin and 5 mM HPA-β-CD in order to increase the resolution between aspartate and glutamate enantiomers. The method was validated for biological application. The limits of detection for d-Asp and d-Glu were 17 and 9 nM, respectively, while the limit of quantification for both analytes was 50 nM. This is the lowest quantification limit reported so far for NBD-tagged d-Asp and d-Glu obtained by validated capillary electrophoresis laser-induced fluorescence method. The applicability of the method was demonstrated by analyzing brain samples of 1-day-old chickens. In all the studied brain areas, the d-enantiomer contributed 1–2 % of the total aspartate content, corresponding to 17–45 nmol/g wet tissue.


Chiral capillary electrophoresis Neurotransmitter amino acids d-Aspartate NBD-F Dual cyclodextrin system 



This work has been supported by the Hungarian National Scientific Research Fund (OTKA 63415 and 73219) and TÁMOP-4.2.1/B-09/1/KMR-2010-0001.

Conflict of interest

The authors have declared no conflict of interest.


  1. 1.
    D’Aniello A, Guiditta A (1977) Identification of d-aspartic acid in the brain of Octopus vulgaris Lam. J Neurochem 29(6):1053–1057CrossRefGoogle Scholar
  2. 2.
    D’Aniello A (2007) d-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53(2):215–234CrossRefGoogle Scholar
  3. 3.
    D’Aniello S, Somorjai I, Garcia-Fernandez J, Topo E, D'Aniello A (2011) d-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 25(3):1014–1027CrossRefGoogle Scholar
  4. 4.
    Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song H, Snyder SH (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci U S A 107(7):3175–3179CrossRefGoogle Scholar
  5. 5.
    Kirschner DL, Green TK (2009) Separation and sensitive detection of d-amino acids in biological matrices. J Sep Sci 32(13):2305–2318CrossRefGoogle Scholar
  6. 6.
    Kitagawa F, Otsuka K (2011) Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3078–3095CrossRefGoogle Scholar
  7. 7.
    Perry M, Li Q, Kennedy RT (2009) Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 653(1):1–22CrossRefGoogle Scholar
  8. 8.
    Lapainis T, Sweedler JV (2008) Contributions of capillary electrophoresis to neuroscience. J Chromatogr A 1184(1–2):144–158Google Scholar
  9. 9.
    Kirschner DL, Jaramillo M, Green TK (2007) Enantioseparation and stacking of cyanobenz[f]isoindole-amino acids by reverse polarity capillary electrophoresis and sulfated beta-cyclodextrin. Anal Chem 79(2):736–743CrossRefGoogle Scholar
  10. 10.
    Miao H, Rubakhin SS, Sweedler JV (2005) Subcellular analysis of d-aspartate. Anal Chem 77(22):7190–7194CrossRefGoogle Scholar
  11. 11.
    Thorsen G, Bergquist J (2000) Chiral separation of amino acids in biological fluids by micellar electrokinetic chromatography with laser-induced fluorescence detection. J Chromatogr B: Biomed Sci Appl 745(2):389–397CrossRefGoogle Scholar
  12. 12.
    Wang S, Fan L, Cui S (2009) CE-LIF chiral separation of aspartic acid and glutamic acid enantiomers using human serum albumin and sodium cholate as dual selectors. J Sep Sci 32(18):3184–3190CrossRefGoogle Scholar
  13. 13.
    Wagner Z, Tábi T, Zachar G, Csillag A, Szökő E (2011) Comparison of quantitative performance of three fluorescence labels in CE/LIF analysis of aspartate and glutamate in brain microdialysate. Electrophoresis 32(20):2816–2822CrossRefGoogle Scholar
  14. 14.
    Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies. Academic, AmsterdamGoogle Scholar
  15. 15.
    Tábi T, Lohinai Z, Pálfi M, Levine M, Szökő E (2008) CE-LIF determination of salivary cadaverine and lysine concentration ratio as an indicator of lysine decarboxylase enzyme activity. Anal Bioanal Chem 391(2):647–651CrossRefGoogle Scholar
  16. 16.
    US-FDA (2001) Guidance for industry—bioanalytical method validation.Google Scholar
  17. 17.
    Szökő E, Tábi T (2010) Analysis of biological samples by capillary electrophoresis with laser induced fluorescence detection. J Pharm Biomed Anal 53(5):1180–1192CrossRefGoogle Scholar
  18. 18.
    Scriba GK (2008) Cyclodextrins in capillary electrophoresis enantioseparations—recent developments and applications. J Sep Sci 31(11):1991–2011CrossRefGoogle Scholar
  19. 19.
    Huang Y, Shi M, Zhao S (2009) Quantification of d-Asp and d-Glu in rat brain and human cerebrospinal fluid by microchip electrophoresis. J Sep Sci 32(17):3001–3006CrossRefGoogle Scholar
  20. 20.
    Samakashvili S, Ibanez C, Simo C, Gil-Bea FJ, Winblad B, Cedazo-Minguez A, Cifuentes A (2011) Analysis of chiral amino acids in cerebrospinal fluid samples linked to different stages of Alzheimer disease. Electrophoresis 32(19):2757–2764CrossRefGoogle Scholar
  21. 21.
    Simo C, Barbas C, Cifuentes A (2002) Sensitive micellar electrokinetic chromatography-laser-induced fluorescence method to analyze chiral amino acids in orange juices. J Agric Food Chem 50(19):5288–5293CrossRefGoogle Scholar
  22. 22.
    Song Y, Feng Y, LeBlanc MH, Zhao S, Liu YM (2006) Assay of trace d-amino acids in neural tissue samples by capillary liquid chromatography/tandem mass spectrometry. Anal Chem 78(23):8121–8128CrossRefGoogle Scholar
  23. 23.
    Fillet M, Bechet I, Hubert P, Crommen J (1996) Resolution improvement by use of carboxymethyl-beta-cyclodextrin as chiral additive for the enantiomeric separation of basic drugs by capillary electrophoresis. J Pharm Biomed Anal 14(8–10):1107–1114CrossRefGoogle Scholar
  24. 24.
    Lelievre F, Gareil P, Jardy A (1997) Selectivity in capillary electrophoresis: application to chiral separations with cyclodextrins. Anal Chem 69(3):385–392CrossRefGoogle Scholar
  25. 25.
    Lurie IS, Klein RF, Dal Cason TA, LeBelle MJ, Brenneisen R, Weinberger RE (1994) Chiral resolution of cationic drugs of forensic interest by capillary electrophoresis with mixtures of neutral and anionic cyclodextrins. Anal Chem 66(22):4019–4026CrossRefGoogle Scholar
  26. 26.
    Rudaz S, Geiser L, Souverain S, Prat J, Veuthey JL (2005) Rapid stereoselective separations of amphetamine derivatives with highly sulfated gamma-cyclodextrin. Electrophoresis 26(20):3910–3920CrossRefGoogle Scholar
  27. 27.
    Galaverna G, Corradini R, Dossena A, Marchelli R, Vecchio G (1997) Histamine-modified beta-cyclodextrins for the enantiomeric separation of dansyl-amino acids in capillary electrophoresis. Electrophoresis 18(6):905–911CrossRefGoogle Scholar
  28. 28.
    Ivanyi R, Jicsinszky L, Juvancz Z, Roos N, Otta K, Szejtli J (2004) Influence of (hydroxy)alkylamino substituents on enantioseparation ability of single-isomer amino-beta-cyclodextrin derivatives in chiral capillary electrophoresis. Electrophoresis 25(16):2675–2686CrossRefGoogle Scholar
  29. 29.
    Guttman A, Cooke N (1994) Practical aspects of chiral separations of pharmaceuticals by capillary electrophoresis I. Separation optimization. J Chromatogr A 680(1):157–162CrossRefGoogle Scholar
  30. 30.
    Rawjee YY, Williams RL, Vigh G (1994) Efficiency optimization in capillary electrophoretic chiral separations using dynamic mobility matching. Anal Chem 66(21):3777–3781CrossRefGoogle Scholar
  31. 31.
    Chen F, Zhang S, Qi L, Chen Y (2006) Chiral capillary electrophoretic separation of amino acids derivatized with 9-fluorenylmethylchloroformate using mixed chiral selectors of beta-cyclodextrin and sodium taurodeoxycholate. Electrophoresis 27(14):2896–2904CrossRefGoogle Scholar
  32. 32.
    Jin LJ, Rodriguez I, Li SF (1999) Enantiomeric separation of amino acids derivatized with fluoresceine isothiocyanate isomer I by micellar electrokinetic chromatography using beta- and gamma-cyclodextrins as chiral selectors. Electrophoresis 20(7):1538–1545CrossRefGoogle Scholar
  33. 33.
    Fillet M, Chankvetadze B, Crommen J, Blaschke G (1999) Designed combination of chiral selectors for adjustment of enantioseparation selectivity in capillary electrophoresis. Electrophoresis 20(13):2691–2697CrossRefGoogle Scholar
  34. 34.
    Fillet M, Hubert P, Crommen J (1997) Enantioseparation of nonsteroidal anti-inflammatory drugs by capillary electrophoresis using mixtures of anionic and uncharged beta-cyclodextrins as chiral additives. Electrophoresis 18(6):1013–1018CrossRefGoogle Scholar
  35. 35.
    Jakubetz H, Juza M, Schurig V (1998) Dual chiral recognition system involving cyclodextrin derivatives in capillary electrophoresis II. Enhancement of enantioselectivity. Electrophoresis 19(5):738–744CrossRefGoogle Scholar
  36. 36.
    Lelievre F, Gareil P, Bahaddi Y, Galons H (1997) Intrinsic selectivity in capillary electrophoresis for chiral separations with dual cyclodextrin systems. Anal Chem 69(3):393–401CrossRefGoogle Scholar
  37. 37.
    Abushoffa AM, Fillet M, Hubert P, Crommen J (2002) Prediction of selectivity for enantiomeric separations of uncharged compounds by capillary electrophoresis involving dual cyclodextrin systems. J Chromatogr A 948(1–2):321–329Google Scholar
  38. 38.
    Tábi T, Magyar K, Szökő E (2003) Chiral characterization of deprenyl-N-oxide and other deprenyl metabolites by capillary electrophoresis using a dual cyclodextrin system in rat urine. Electrophoresis 24(15):2665–2673CrossRefGoogle Scholar
  39. 39.
    Katane M, Homma H (2011) d-Aspartate—an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B Analyt Technol Biomed Life Sci 879(29):3108–3121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zsolt Wagner
    • 1
  • Tamás Tábi
    • 1
  • Tamás Jakó
    • 1
  • Gergely Zachar
    • 2
  • András Csillag
    • 2
  • Éva Szökő
    • 1
    Email author
  1. 1.Department of PharmacodynamicsSemmelweis UniversityBudapestHungary
  2. 2.Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary

Personalised recommendations