Analytical and Bioanalytical Chemistry

, Volume 404, Issue 8, pp 2329–2338 | Cite as

Characterization and deposition of various light-harvesting antenna complexes by electrospray atomization

  • Vivek B. Shah
  • Gregory S. Orf
  • Sean Reisch
  • Lucas B. Harrington
  • Mindy Prado
  • Robert E. Blankenship
  • Pratim Biswas
Original Paper

Abstract

Photosynthetic organisms have light-harvesting complexes that absorb and transfer energy efficiently to reaction centers. Light-harvesting complexes (LHCs) have received increased attention in order to understand the natural photosynthetic process and also to utilize their unique properties in fabricating efficient artificial and bio-hybrid devices to capture solar energy. In this work, LHCs with different architectures, sizes, and absorption spectra, such as chlorosomes, Fenna–Matthews–Olson (FMO) protein, LH2 complex, and phycobilisome have been characterized by an electrospray-scanning mobility particle-sizer system (ES-SMPS). The size measured by ES-SMPS for FMO, chlorosomes, LH2, and phycobilisome were 6.4, 23.3, 9.5, and 33.4 nm, respectively. These size measurements were compared with values measured by dynamic light scattering and those reported in the literature. These complexes were deposited onto a transparent substrate by electrospray deposition. Absorption and fluorescence spectra of the deposited LHCs were measured. It was observed that the LHCs have light absorption and fluorescence spectra similar to that in solution, demonstrating the viability of the process.

Keywords

Electrospray-scanning mobility particle sizer (ES-SMPS) Electrospray deposition Light-harvesting complexes (LHCs) 

Notes

Acknowledgments

This work was supported by a grant from the Department of Energy (DOE) project (#DOESC0001035) Photosynthetic Antenna Research Center (PARC). The authors thank Mr. Xianglu Li for his help in purifying phycobilisomes from Synechocystis PCC 6803. Support from National Science Foundation-National Nanotechnology Infrastructure Network for the DLS instrument is gratefully acknowledged. VBS would also like to thank McDonnell International Scholars Academy for the fellowship.

Supplementary material

216_2012_6368_MOESM1_ESM.pdf (128 kb)
ESM 1(PDF 127 kb)

References

  1. 1.
    Giardi MT, Koblizek M, Masojidek J (2001) Biosens Bioelectron 16(9–12):1027–1033CrossRefGoogle Scholar
  2. 2.
    Badura A, Esper B, Ataka K, Grunwald C, Woll C, Kuhlmann J, Heberle J, Rogner M (2006) Photochem Photobiol 82(5):1385–1390CrossRefGoogle Scholar
  3. 3.
    Allam NK, Yen CW, Near RD, El-Sayed MA (2011) Energ Environ Sci 4(8):2909–2914CrossRefGoogle Scholar
  4. 4.
    Frolov L, Wilner O, Carmeli C, Carmeli I (2008) Adv Mater 20(2):263–266CrossRefGoogle Scholar
  5. 5.
    Bora DK, Rozhkova EA, Schrantz K, Wyss PP, Braun A, Graule T, Constable EC (2012) Adv Funct Mater 22(3):490–502CrossRefGoogle Scholar
  6. 6.
    Modesto-Lopez LB, Thimsen EJ, Collins AM, Blankenship RE, Biswas P (2010) Energ Environ Sci 3(2):216–222CrossRefGoogle Scholar
  7. 7.
    Montano GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB, Blankenship RE (2003) Biophys J 85(4):2560–2565CrossRefGoogle Scholar
  8. 8.
    Scheuring S, Reiss-Husson F, Engel A, Rigaud JL, Ranck JL (2001) Embo J 20(12):3029–3035CrossRefGoogle Scholar
  9. 9.
    Tang KH, Urban VS, Wen JZ, Xin YY, Blankenship RE (2010) Biophys J 99(8):2398–2407CrossRefGoogle Scholar
  10. 10.
    Fenna RE, Matthews BW (1975) Nature 258(5536):573–577CrossRefGoogle Scholar
  11. 11.
    Schaumloffel D, Tholey A (2011) Anal Bioanal Chem 400(6):1645–1652CrossRefGoogle Scholar
  12. 12.
    Stark A, Meyer C, Kraehling T, Jestel G, Marggraf U, Schilling M, Janasek D, Franzke J (2011) Anal Bioanal Chem 400(2):561–569CrossRefGoogle Scholar
  13. 13.
    Song DK, Lenggoro IW, Hayashi Y, Okuyama K, Kim SS (2005) Langmuir 21(23):10375–10382CrossRefGoogle Scholar
  14. 14.
    Kaufman SL, Skogen JW, Dorman FD, Zarrin F, Lewis KC (1996) Anal Chem 68(11):1895–1904CrossRefGoogle Scholar
  15. 15.
    Hogan CJ, Biswas P (2008) J Aerosol Sci 39(5):432–440CrossRefGoogle Scholar
  16. 16.
    Mouradian S, Skogen JW, Dorman FD, Zarrin F, Kaufman SL, Smith LM (1997) Anal Chem 69(5):919–925CrossRefGoogle Scholar
  17. 17.
    Hogan CJ, Kettleson EM, Ramaswami B, Chen DR, Biswas P (2006) Anal Chem 78(3):844–852CrossRefGoogle Scholar
  18. 18.
    Tang KH, Zhu LY, Urban VS, Collins AM, Biswas P, Blankenship RE (2011) Langmuir 27(8):4816–4828CrossRefGoogle Scholar
  19. 19.
    Saga Y, Kim TY, Hisai T, Tamiaki H (2006) Thin Solid Films 500(1–2):278–282CrossRefGoogle Scholar
  20. 20.
    Hnilova M, Karaca BT, Park J, Jia C, Wilson BR, Sarikaya M, Tamerler C (2012) Biotechnol Bioeng 109(5):1120–1130CrossRefGoogle Scholar
  21. 21.
    Escalante M, Maury P, Bruinink CM, van der Werf K, Olsen JD, Timney JA, Huskens J, Hunter CN, Subramaniam V, Otto C (2008) Nanotechnol 19 (2): 025101/1–025101/6Google Scholar
  22. 22.
    Morozov VN, Morozova TY (1999) Anal Chem 71(7):1415–1420CrossRefGoogle Scholar
  23. 23.
    Lopez LBM, Pasteris JD, Biswas P (2009) Appl Spectrosc 63(6):627–635CrossRefGoogle Scholar
  24. 24.
    Gerola PD, Olson JM (1986) Biochim Biophys Acta 848(1):69–76CrossRefGoogle Scholar
  25. 25.
    Li YF, Zhou WL, Blankenship RE, Allen JP (1997) J Mol Biol 271(3):456–471CrossRefGoogle Scholar
  26. 26.
    Gall A, Fowler GJS, Hunter CN, Robert B (1997) Biochem 36(51):16282–16287CrossRefGoogle Scholar
  27. 27.
    David L, Marx A, Adir N (2011) J Mol Biol 405(1):201–213CrossRefGoogle Scholar
  28. 28.
    Chen DR, Pui DYH, Kaufman SL (1995) J Aerosol Sci 26(6):963–978CrossRefGoogle Scholar
  29. 29.
    Basak S, Chen DR, Biswas P (2007) Chem Eng Sci 62(4):1263–1268CrossRefGoogle Scholar
  30. 30.
    Chen DR, Pui DYH (1997) Aerosol Sci Technol 27(3):367–380CrossRefGoogle Scholar
  31. 31.
    Kim SH, Mulholland GW, Zachariah MR (2007) J Aerosol Sci 38(8):823–842CrossRefGoogle Scholar
  32. 32.
    Wen J, Zhang H, Gross ML, Blankenship RE (2011) Biochem 50(17):3502–3511CrossRefGoogle Scholar
  33. 33.
    Allmaier G, Laschober C, Szymanski WW (2008) J Am Soc Mass Spectr 19(8):1062–1068CrossRefGoogle Scholar
  34. 34.
    Olive J, Ajlani G, Astier C, Recouvreur M, Vernotte C (1997) Biochim Biophys Acta-Bioenerg 1319(2–3):275–282CrossRefGoogle Scholar
  35. 35.
    Rojas OJ, Stubenrauch C, Schulze-Schlarmann J, Claesson PM (2005) Langmuir 21(25):11836–11843CrossRefGoogle Scholar
  36. 36.
    Lakowicz JR, Weber G (1973) Biochem 12(21):4161–4170CrossRefGoogle Scholar
  37. 37.
    van Noort PI, Zhu YW, LoBrutto R, Blankenship RE (1997) Biophys J 72(1):316–325CrossRefGoogle Scholar
  38. 38.
    MacColl R (1998) J Struct Biol 124(2–3):311–334CrossRefGoogle Scholar
  39. 39.
    Tronrud D, Wen J, Gay L, Blankenship R (2009) Photosynth Res 100(2):79–87CrossRefGoogle Scholar
  40. 40.
    Arteni AA, Liu LN, Aartsma TJ, Zhang YZ, Zhou BC, Boekema EJ (2008) Photosynth Res 95(2–3):169–174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Vivek B. Shah
    • 1
  • Gregory S. Orf
    • 2
  • Sean Reisch
    • 1
    • 3
  • Lucas B. Harrington
    • 2
  • Mindy Prado
    • 2
  • Robert E. Blankenship
    • 2
  • Pratim Biswas
    • 1
  1. 1.Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisUSA
  2. 2.Departments of Chemistry and BiologyWashington University in Saint LouisSaint LouisUSA
  3. 3.Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations