Analytical and Bioanalytical Chemistry

, Volume 404, Issue 8, pp 2277–2286 | Cite as

Sensitive, robust and automated protein analysis of cell differentiation and of primary human blood cells by intact cell MALDI mass spectrometry biotyping

  • Bogdan Munteanu
  • Carolina von Reitzenstein
  • Gertrud Maria Hänsch
  • Björn Meyer
  • Carsten Hopf
Original Paper

Abstract

Intact cell mass spectrometry biotyping, a collection of methods for classification of cells based on mass spectrometric fingerprints, is an established method in clinical and environmental microbiology. It has recently also been applied to the investigation of mammalian cells including primary blood cells and cultured cells. However, few automated procedures suitable for higher throughput and little analytical standardization of mammalian biotyping approaches have been reported so far. Here, we present a novel automated method that robustly classifies as few as 250 cells per spot. Automatically acquired cell fingerprints from cultured and primary cells show high technical (R > 0.95) and biological reproducibility (R = 0.83–0.96), with a median peak variance below 12 %. Ion suppression is shown to be a major concern at higher cell numbers and needs to be carefully monitored. We demonstrate that intact cell mass spectrometric signatures of different cell lines start to resemble each other at higher trifluoroacetic acid (TFA) concentrations and that therefore low concentrations of TFA in the matrix solution are preferred. We show that in vitro differentiation of HL-60 cells into a neutrophil-like phenotype can be rapidly and robustly monitored. We utilize the method for global analysis of person-to-person differences in mass spectral signatures of intact polymorphonuclear neutrophils and monocytes obtained from healthy volunteers. Our data suggest that automated MALDI mass spectrometry cell biotyping could be a useful complementary approach in clinical cell analysis.

Figure

Sensitive, robust and automated MALDI mass spectrometry biotyping enables analysis of cell differentiation fingerprints

Keywords

Intact cell mass spectrometry MALDI Mammalian cell biotyping Cell differentiation Primary blood cells 

Notes

Acknowledgments

This work was supported by the Baden-Württemberg Ministry of Science and Culture (INST 874/2-1 LAGG to C.H.) and by a joint grant (“ZAFH ABIMAS”) from ZO IV by the Landesstiftung Baden-Württemberg and the Europäischer Fonds für regionale Entwicklung (EFRE; to C.H.). We are grateful to Dimitri Gerhardt for exploring established IC-MALDI MS methods and to Annette Hallama for generating the p47phox antiserum. The GAPDH antibody was kindly provided by Mathias Hafner. The authors like to thank Mikhail Savitski for helpful discussions.

Supplementary material

216_2012_6357_MOESM1_ESM.pdf (3.4 mb)
ESM 1(PDF 3437 kb)

References

  1. 1.
    Anhalt J, Fenselau C (1975) Identification of bacteria using mass spectrometry. Anal Chem 47(2):219–225. doi:10.1021/ac60352a007 CrossRefGoogle Scholar
  2. 2.
    Cain T, Lubman DM, Weber WJ (1994) Differentiation of bacteria using protein profiles from matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 8:1026–1030CrossRefGoogle Scholar
  3. 3.
    Demirev PA, Fenselau C (2008) Mass spectrometry for rapid characterization of microorganisms. Annu Rev Anal Chem (Palo Alto Calif) 1:71–93. doi:10.1146/annurev.anchem.1.031207.112838 CrossRefGoogle Scholar
  4. 4.
    Sedo O, Sedlacek I, Zdrahal Z (2011) Sample preparation methods for MALDI-MS profiling of bacteria. Mass Spectrom Rev 30(3):417–434. doi:10.1002/mas.20287 CrossRefGoogle Scholar
  5. 5.
    Welker M, Moore ER (2011) Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 34(1):2–11. doi:10.1016/j.syapm.2010.11.013 CrossRefGoogle Scholar
  6. 6.
    Croxatto A, Prod’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36(2):380–407. doi:10.1111/j.1574-6976.2011.00298.x CrossRefGoogle Scholar
  7. 7.
    Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49(4):543–551. doi:10.1086/600885 CrossRefGoogle Scholar
  8. 8.
    Zhang X, Scalf M, Berggren TW, Westphall MS, Smith LM (2006) Identification of mammalian cell lines using MALDI-TOF and LC-ESI-MS/MS mass spectrometry. J Am Soc Mass Spectrom 17(4):490–499. doi:10.1016/j.jasms.2005.12.007 CrossRefGoogle Scholar
  9. 9.
    Marvin-Guy LF, Duncan P, Wagniere S, Antille N, Porta N, Affolter M, Kussmann M (2008) Rapid identification of differentiation markers from whole epithelial cells by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and statistical analysis. Rapid Commun Mass Spectrom 22(8):1099–1108. doi:10.1002/rcm.3479 CrossRefGoogle Scholar
  10. 10.
    Ouedraogo R, Flaudrops C, Ben Amara A, Capo C, Raoult D, Mege JL (2010) Global analysis of circulating immune cells by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One 5(10):e13691. doi:10.1371/journal.pone.0013691 CrossRefGoogle Scholar
  11. 11.
    Karger A, Bettin B, Lenk M, Mettenleiter TC (2010) Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing. J Virol Methods 164(1–2):116–121. doi:10.1016/j.jviromet.2009.11.022 CrossRefGoogle Scholar
  12. 12.
    Dong H, Shen W, Cheung MT, Liang Y, Cheung HY, Allmaier G, Kin-Chung Au O, Lam YW (2011) Rapid detection of apoptosis in mammalian cells by using intact cell MALDI mass spectrometry. Analyst 136(24):5181–5189. doi:10.1039/c1an15750g CrossRefGoogle Scholar
  13. 13.
    Hanrieder J, Wicher G, Bergquist J, Andersson M, Fex-Svenningsen A (2011) MALDI mass spectrometry based molecular phenotyping of CNS glial cells for prediction in mammalian brain tissue. Anal Bioanal Chem 401(1):135–147. doi:10.1007/s00216-011-5043-y CrossRefGoogle Scholar
  14. 14.
    Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC (1978) Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci U S A 75(5):2458–2462CrossRefGoogle Scholar
  15. 15.
    Cohen SL, Chait BT (1996) Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem 68(1):31–37CrossRefGoogle Scholar
  16. 16.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60(20):2299–2301CrossRefGoogle Scholar
  17. 17.
    Penno MA, Ernst M, Hoffmann P (2009) Optimal preparation methods for automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling of low molecular weight proteins and peptides. Rapid Commun Mass Spectrom 23(17):2656–2662. doi:10.1002/rcm.4167 CrossRefGoogle Scholar
  18. 18.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639CrossRefGoogle Scholar
  19. 19.
    Williams TL, Andrzejewski D, Lay JO, Musser SM (2003) Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Spectrom 14(4):342–351. doi:10.1016/S1044-0305(03)00065-5 CrossRefGoogle Scholar
  20. 20.
    Clark RA, Volpp BD, Leidal KG, Nauseef WM (1990) Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest 85(3):714–721. doi:10.1172/JCI114496 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Bogdan Munteanu
    • 1
    • 2
    • 3
  • Carolina von Reitzenstein
    • 1
    • 2
    • 3
  • Gertrud Maria Hänsch
    • 4
  • Björn Meyer
    • 1
    • 2
    • 3
  • Carsten Hopf
    • 1
    • 2
    • 3
  1. 1.Instrumental Analysis and Bioanalysis, Department of BiotechnologyMannheim University of Applied SciencesMannheimGermany
  2. 2.Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS)Mannheim University of Applied SciencesMannheimGermany
  3. 3.Institute of Medical TechnologyUniversity of Heidelberg and Mannheim University of Applied SciencesMannheimGermany
  4. 4.Institute of ImmunologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations