Advertisement

Analytical and Bioanalytical Chemistry

, Volume 404, Issue 8, pp 2185–2191 | Cite as

HPLC-HG-ICP-MS: a sensitive and selective method for inorganic arsenic in seafood

  • Ásta H. Pétursdóttir
  • Helga Gunnlaugsdóttir
  • Hrönn Jörundsdóttir
  • Adrien Mestrot
  • Eva M. Krupp
  • Jörg FeldmannEmail author
Technical Note

Abstract

The addition of an online post-column hydride generation (HG) step to the commonly used high-performance liquid chromatography inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) setup for arsenic speciation proved to significantly improve the detection limits for the determination of inorganic arsenic (iAs) as arsenate in seafood samples, where the limit of detection and limit of quantification were found to be 0.0004 and 0.0014 mg kg−1, respectively with HG. HG as an additional step further added to the selectivity of the determination of the iAs species and increased the detection and quantification of low levels of iAs (<0.002 mg kg−1) in samples with complicated matrices.

Keywords

Speciation Analytical chemistry Seafood Arsenic Inorganic CRM Feed Fish meal 

Notes

Acknowledgement

We thank Rannis (The Icelandic Research Fund for Graduate Students), Matís, the Collage of Physical Sciences at Aberdeen University, the SORSAS award (Scottish Overseas Research Student Awards Scheme) and the TESLA research fund for providing support. The Síldarvinnslan hf (SVN) and Vinnslustöðin hf (VSV) in Iceland are further acknowledged for the samples provided.

Supplementary material

216_2012_6347_MOESM1_ESM.pdf (120 kb)
ESM 1 (PDF 119 kb)

References

  1. 1.
    European Food Safety Authority (2009) Scientific opinion on arsenic in food. EFSA J 7(10):1351Google Scholar
  2. 2.
    Feldmann J, Krupp EM (2011) Critical review or scientific opinion paper: arsenosugars—a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs? Anal Bioanal Chem 399(5):1735–1741. doi: 10.1007/s00216-010-4303-6 CrossRefGoogle Scholar
  3. 3.
    Edmonds JS, Francesconi KA (1993) Arsenic in seafoods: human health aspects and regulations. Mar Pollut Bull 26(12):665–674CrossRefGoogle Scholar
  4. 4.
    ATSDR (2007) Toxicological profile for arsenic. United States Department of Helath and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  5. 5.
    de la Calle MB, Linsinger T, Emteborg H, Charoud-Got J, Verbist I (2010) IMEP-107: total and inorganic As in rice, JRC/IRMM report EUR24314 EN. JRC Scientific and Technical Reports. BelgiumGoogle Scholar
  6. 6.
    de la Calle MB, Emteborg H, Robouch O, Verbist I (2010) IMEP-109: total cadmium, lead, arsenic and mercury as well as methylmercury and inorganic arsenic in seafood. JRC/IRMM report EUR 24560 EN. JRC Scientific and Technical Reports. BelgiumGoogle Scholar
  7. 7.
    I. Baer, de la Calle MB, Verbist I, Emteborg H, Robouch P (2011) IMEP-30: total arsenic, cadmium, lead, and mercury, as well as methylmercury and inorganic arsenic in seafood, JRC/IRMM report EUR 24604 EN. JRC Scientific and Technical Reports. BelgiumGoogle Scholar
  8. 8.
    de la Calle MB, I. Baer, H. Emteborg, J. Charoud-Got, P. Robouch, I. Verbist, Kortsen B (2011) IMEP-112: total and inorganic arsenic in wheat, vegetable food and algae, JRC/IRMM report EUR 24937 EN. JRC Scientific and Technical Reports. BelgiumGoogle Scholar
  9. 9.
    Borak J, Hosgood HD (2007) Seafood arsenic: implications for human risk assessment. Regul Toxicol Pharmacol 47(2):204–212CrossRefGoogle Scholar
  10. 10.
    Francesconi KA (2010) Arsenic species in seafood: origin and human health implications. Pure Appl Chem 82(2):373–381. doi: 10.1351/pac-con-09-07-01 CrossRefGoogle Scholar
  11. 11.
    Francesconi KA, Kuehnelt D (2004) Determination of arsenic species: a critical review of methods and applications, 2000-2003. Analyst 129(5):373–395. doi: 10.1039/b401321m CrossRefGoogle Scholar
  12. 12.
    Regmi R, Milne BF, Feldmann J (2007) Hydride generation activity of arsenosugars and thioarsenicals. Anal Bioanal Chem 388(4):775–782. doi: 10.1007/s00216-006-1076-z CrossRefGoogle Scholar
  13. 13.
    Gallagher PA, Wei XY, Shoemaker JA, Brockhoff CA, Creed JT (1999) Detection of arsenosugars from kelp extracts via IC-electrospray ionization-MS-MS and IC membrane hydride generation ICP-MS. J Anal At Spectrom 14(12):1829–1834. doi: 10.1039/a906249a CrossRefGoogle Scholar
  14. 14.
    Gomez-Ariza JL, Sanchez-Rodas D, Giraldez I, Morales E (2000) A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples. Talanta 51(2):257–268CrossRefGoogle Scholar
  15. 15.
    Hwang CJ, Jiang SJ (1994) Determination of arsenic compounds in water samples by liquid-chromatography inductively-coupled plasma-mass spectrometry with an in-situ nebulizer-hydride generator. Anal Chim Acta 289(2):205–213. doi: 10.1016/0003-2670(94)80104-5 CrossRefGoogle Scholar
  16. 16.
    Hsu KC, Sun CC, Huang YL (2011) Arsenic speciation in biomedical sciences: recent advances and applications. Kaohsiung J Med Sci 27(9):382–389. doi: 10.1016/j.kjms.2011.05.005 CrossRefGoogle Scholar
  17. 17.
    Chen LWL, Lu XF, Le XC (2010) Complementary chromatography separation combined with hydride generation-inductively coupled plasma mass spectrometry for arsenic speciation in human urine. Anal Chim Acta 675(1):71–75. doi: 10.1016/j.aca.2010.06.038 CrossRefGoogle Scholar
  18. 18.
    Nakazato T, Tao H, Taniguchi T, Isshiki K (2002) Determination of arsenite, arsenate, and monomethylarsonic acid in seawater by ion-exclusion chromatography combined with inductively coupled plasma mass spectrometry using reaction cell and hydride generation techniques. Talanta 58(1):121–132. doi: 10.1016/s0039-9140(02)00261-8 CrossRefGoogle Scholar
  19. 19.
    Petursdottir AH, Gunnlaudsdottir H, Jorundsdottir H, Raab A, Krupp EM, Feldmann J (2012) Determination of inorganic arsenic in seafood: emphasizing the need for certified reference materials. Pure Appl Chem 84(2):191–202. doi: 10.1351/pac-con-11-10-03 Google Scholar
  20. 20.
    Lorenzana RM, Yeow AY, Colman JT, Chappell LL, Choudhury H (2009) Arsenic in seafood: speciation issues for human health risk assessment. Hum Ecol Risk Assess 15(1):185–200. doi: 10.1080/10807030802615949 CrossRefGoogle Scholar
  21. 21.
    Sloth JJ, Julshamn K (2008) Survey of total and inorganic arsenic content in blue mussels (Mytilus edulis L.) from Norwegian fiords: revelation of unusual high levels of inorganic arsenic. J Agric Food Chem 56(4):1269–1273. doi: 10.1021/jf073174+ CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ásta H. Pétursdóttir
    • 1
    • 2
  • Helga Gunnlaugsdóttir
    • 2
  • Hrönn Jörundsdóttir
    • 2
  • Adrien Mestrot
    • 1
  • Eva M. Krupp
    • 1
    • 3
  • Jörg Feldmann
    • 1
    Email author
  1. 1.TESLA—Trace Element Speciation Laboratory, Chemistry, College of Physical SciencesUniversity of AberdeenAberdeenUK
  2. 2.Environment and Genetics DepartmentMatisReykjavikIceland
  3. 3.ACES—Aberdeen Centre of Environmental SustainabilityUniversity of AberdeenAberdeenUK

Personalised recommendations