Analytical and Bioanalytical Chemistry

, Volume 405, Issue 13, pp 4451–4465 | Cite as

Developing qualitative LC-MS methods for characterization of Vaccinium berry Standard Reference Materials

  • Mark S. Lowenthal
  • Melissa M. Phillips
  • Catherine A. Rimmer
  • Paul A. Rudnick
  • Yamil Simón-Manso
  • Stephen E. Stein
  • Dmitrii Tchekhovskoi
  • Karen W. Phinney
Original Paper

Abstract

Standard Reference Materials (SRMs) offer the scientific community a stable and homogenous source of material that holds countless application possibilities. Traditionally, the National Institute of Standards and Technology (NIST) has provided SRMs with associated quantitative information (certified values) for a select group of targeted analytes as measured in a solution or complex matrix. While the current needs of the SRM community are expanding to include non-quantitative data, NIST is attempting to broaden the scope of how and what information is offered to the SRM community by providing qualitative information about biomaterials, such as chromatographic fingerprints and profiles of untargeted identifications. In this work, metabolomic and proteomic profiling efforts were employed to characterize a suite of six Vaccinium berry SRMs. In the discovery phase, liquid chromatography-tandem mass spectrometry (LC-MS/MS) data was matched to mass spectral libraries; a subsequent validation phase based on multiple-reaction monitoring LC-MS/MS relied on both retention time matching of authentic standards along with fragmentation data for a qualitative overview of the most prominent organic compounds present. Definitive and putative identifications were determined for over 70 metabolites based on reporting guidelines set forth by the Metabolomics Standards Initiative (Metabolomics 3(3):211–221, 2007), and the capability of electrospray ionization mass spectrometry (ESI-MS) to profile untargeted metabolites within a complex matrix using mass spectral matching is demonstrated. Bottom-up proteomic analyses were possible using peptide databases translated from expressed sequence tags (ESTs). Homology searches provided identification of novel Vaccinium proteins based on homology to related genera. Chromatographic fingerprints of these berry materials were acquired for supplemental qualitative information to be provided to users of these SRMs. An unbounded set of qualitative data about a biomaterial is a valuable complement to quantitative information traditionally provided in NIST Certificates of Analysis.

Keywords

Vaccinium LC-MS Qualitative analysis Reference materials Mass spectral library Metabolites 

Supplementary material

216_2012_6346_MOESM1_ESM.pdf (1.4 mb)
ESM 1(PDF 1445 kb)

References

  1. 1.
    Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Metabolomics 3(3):211–221CrossRefGoogle Scholar
  2. 2.
    Stein SE (2011) NIST 11 mass spectral library. [online database]; v 2.0:[NIST/EPA/NIH Mass Spectral Library and NIST Mass Spectral Search Program]. Available from: http://chemdata.nist.gov/mass-spc/ms-search/
  3. 3.
    NIST. Certificate of Analysis (COA). Available from: http://www.nist.gov/srm/index.cfm
  4. 4.
    Phillips MM, Case RJ, Rimmer CA, Sander LC, Sharpless KE, Wise SA, Yen JH (2010) Anal Bioanal Chem 398(1):425–434CrossRefGoogle Scholar
  5. 5.
    Lee YL, Owens J, Thrupp L, Cesario TC (2000) JAMA 283(13):1691CrossRefGoogle Scholar
  6. 6.
    Kuzminski LN (1996) Nutr Rev 54(11):S87–S90CrossRefGoogle Scholar
  7. 7.
    Nestel P (2003) Curr Opin Lipidol 14(1):3–8CrossRefGoogle Scholar
  8. 8.
    Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M (2003) J Agric Food Chem 51(1):68–75CrossRefGoogle Scholar
  9. 9.
    Lazze MC, Savio M, Pizzala R, Cazzalini O, Perucca P, Scovassi AI, Stivala LA, Bianchi L (2004) Carcinogenesis 25(8):1427–1433CrossRefGoogle Scholar
  10. 10.
    Yi WG, Fischer J, Krewer G, Akoh CC (2005) J Agric Food Chem 53(18):7320–7329CrossRefGoogle Scholar
  11. 11.
    Agnese AM, Perez C, Cabrera JL (2001) Phytomedicine 8(5):389–394CrossRefGoogle Scholar
  12. 12.
    Tikkanen MJ, Wahala K, Ojala S, Vihma V, Adlercreutz H (1998) Proc Natl Acad Sci U S A 95(6):3106–3110CrossRefGoogle Scholar
  13. 13.
    Picerno P, Mencherini T, Lauro MR, Barbato F, Aquino R (2003) J Agric Food Chem 51(22):6423–6428CrossRefGoogle Scholar
  14. 14.
    Bramati L, Aquilano F, Pietta P (2003) J Agric Food Chem 51(25):7472–7474CrossRefGoogle Scholar
  15. 15.
    Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Nat Biotechnol 18(11):1157–1161CrossRefGoogle Scholar
  16. 16.
    Sumner LW, Mendes P, Dixon RA (2003) Phytochemistry 62(6):817–836CrossRefGoogle Scholar
  17. 17.
    Hall RD, Brouwer ID, Fitzgerald MA (2008) Physiol Plant 132(2):162–175Google Scholar
  18. 18.
    Schauer N, Fernie AR (2006) Trends Plant Sci 11(10):508–516CrossRefGoogle Scholar
  19. 19.
    Guy C, Kopka J, Moritz T (2008) Physiol Plant 132(2):113–116CrossRefGoogle Scholar
  20. 20.
    Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H (2010) Mol Plant Pathol 11(6):769–782Google Scholar
  21. 21.
    Rumbold K, van Buijsen HJJ, Overkamp KM, van Groenestijn JW, Punt PJvan der Werf MJ (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb Cell Fact 8Google Scholar
  22. 22.
    Steinfath M, Strehmel N, Peters R, Schauer N, Groth D, Hummel J, Steup M, Selbig J, Kopka J, Geigenberger Pvan Dongen JT (2010) Plant Biotechnol J 8(8):900–911CrossRefGoogle Scholar
  23. 23.
    Mercuro G, Bassareo PP, Deidda M, Cadeddu C, Barberini L, Atzori L (2011) J Cardiovasc Med 12(11):800–805CrossRefGoogle Scholar
  24. 24.
    Xuan JK, Pan GH, Qiu YP, Yang L, Su MM, Liu YM, Chen J, Feng GY, Fang YR, Jia W, Xing QH, He L (2011) J Proteome Res 10(12):5433–5443CrossRefGoogle Scholar
  25. 25.
    Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T (2011) Metabolomics 7(3):307–328CrossRefGoogle Scholar
  26. 26.
    Allwood JW, De Vos RCH, Moing A, Deborde C, Erban A, Kopka J, Goodacre R, Hall RD (2011) Plant metabolomics and its potential for systems biology research: background concepts, technology, and methodology. In: Jameson DVMWHV (ed) Methods in enzymology: methods in systems biology, vol 500, pp 299–336Google Scholar
  27. 27.
    Wishart DS (2011) Bioanalysis 3(15):1769–1782CrossRefGoogle Scholar
  28. 28.
    Lei Z, Huhman DV, Sumner LW (2011) J Biol Chem 286(29):25435–25442CrossRefGoogle Scholar
  29. 29.
    Lee JS, Kim DH, Liu KH, Oh TK, Lee CH (2005) Rapid Commun Mass Spectrom 19(23):3539–3548CrossRefGoogle Scholar
  30. 30.
    Stein SE, Scott DR (1994) J Am Soc Mass Spectrom 5(9):859–866CrossRefGoogle Scholar
  31. 31.
    Stein SE (1994) J Am Soc Mass Spectrom 5(4):316–323CrossRefGoogle Scholar
  32. 32.
    Stein S (2012) Mass spectral reference libraries: an ever-expanding resource for chemical identification. Anal Chem. doi:10.1021/ac301205z
  33. 33.
    Eng JK, McCormack AL, Yates JR (1994) J Am Soc Mass Spectrom 5(11):976–989CrossRefGoogle Scholar
  34. 34.
    Moze S, Polak T, Gasperlin L, Koron D, Vanzo A, Ulrih NP, Abram V (2011) J Agric Food Chem 59(13):6998–7004CrossRefGoogle Scholar
  35. 35.
    Penniston KL, Nakada SY, Holmes RP, Assimos DG (2008) J Endourol 22(3):567–570CrossRefGoogle Scholar
  36. 36.
    Taruscio TG, Barney DL, Exon J (2004) J Agric Food Chem 52(10):3169–3176CrossRefGoogle Scholar
  37. 37.
    Seeram NP, Momin RA, Nair MG, Bourquin LD (2001) Phytomedicine 8(5):362–369CrossRefGoogle Scholar
  38. 38.
    Nyman NA, Kumpulainen JT (2001) J Agric Food Chem 49(9):4183–4187CrossRefGoogle Scholar
  39. 39.
    Liu J, Zhang W, Jing H, Popovich DG (2010) J Food Sci 75(3):H103–H107CrossRefGoogle Scholar
  40. 40.
    Hosseinian FS, Beta T (2007) J Agric Food Chem 55(26):10832–10838CrossRefGoogle Scholar
  41. 41.
    Rahman MM, Ichiyanagi T, Komiyama T, Hatano Y, Konishi T (2006) Free Radic Res 40(9):993–1002CrossRefGoogle Scholar
  42. 42.
    Tian QG, Giusti MM, Stoner GD, Schwartz SJ (2005) J Chromatogr A 1091(1–2):72–82Google Scholar
  43. 43.
    Lee JH, Lee KT, Yang JH, Baek NI, Kim DK (2004) Arch Pharm Res 27(1):53–56CrossRefGoogle Scholar
  44. 44.
    Chen S-N, Turner A, Jaki BU, Nikolic D, van Breemen RB, Friesen JB, Pauli GF (2008) J Pharm Biomed Anal 46(4):692–698CrossRefGoogle Scholar
  45. 45.
    Li ZL, Tian JK, Zhou WM (2008) Zhongguo Zhong Yao Za Zhi 33(18):2087–2089Google Scholar
  46. 46.
    Parry J, Su L, Moore J, Cheng ZH, Luther M, Rao JN, Wang JYYLL (2006) J Agric Food Chem 54(11):3773–3778CrossRefGoogle Scholar
  47. 47.
    Parry J, Su L, Luther M, Zhou KQ, Yurawecz MP, Yu P, Whittaker LL (2005) J Agric Food Chem 53(3):566–573CrossRefGoogle Scholar
  48. 48.
    Stevenson DE, Cooney JM, Jensen DJ, Zhang J, Wibisono R (2007) Mol Nutr Food Res 51(8):939–945CrossRefGoogle Scholar
  49. 49.
    Hokkanen J, Mattila S, Jaakola L, Pirttila AM, Tolonen A (2009) J Agric Food Chem 57(20):9437–9447CrossRefGoogle Scholar
  50. 50.
    Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M (2011) Mini-Rev Med Chem 11(4):298–344CrossRefGoogle Scholar
  51. 51.
    Sellappan S, Akoh CC, Krewer G (2002) J Agric Food Chem 50(8):2432–2438CrossRefGoogle Scholar
  52. 52.
    Dastmalchi K, Flores G, Petrova V, Pedraza-Penalosa P, Kennelly EJ (2011) J Agric Food Chem 59(7):3020–3026CrossRefGoogle Scholar
  53. 53.
    White BL, Howard LR, Prior RL (2011) J Agric Food Chem 59(9):4692–4698CrossRefGoogle Scholar
  54. 54.
    Zuo YG, Wang CX, Zhan J (2002) J Agric Food Chem 50(13):3789–3794CrossRefGoogle Scholar
  55. 55.
    Seeram NP, Bourquin LD, Nair MG (2001) J Agric Food Chem 49(10):4924–4929CrossRefGoogle Scholar
  56. 56.
    Zhang K, Zuo YG (2004) J Agric Food Chem 52(2):222–227CrossRefGoogle Scholar
  57. 57.
    Zadernowski R, Naczk M, Nesterowicz J (2005) J Agric Food Chem 53(6):2118–2124CrossRefGoogle Scholar
  58. 58.
    Reed J (2002) Crit Rev Food Sci Nutr 42(3):301–316CrossRefGoogle Scholar
  59. 59.
    Ayaz FA, Hayirlioglu-Ayaz S, Gruz J, Novak O, Strnad M (2005) J Agric Food Chem 53(21):8116–8122CrossRefGoogle Scholar
  60. 60.
    Famiani F, Cultrera NGM, Battistelli A, Casulli V, Proietti P, Standardi A, Chen ZH, Leegood RC, Walker RP (2005) J Exp Bot 56(421):2959–2969CrossRefGoogle Scholar
  61. 61.
    Ulrich (1971) The biochemistry of fruits and their products. Academic, LondonGoogle Scholar
  62. 62.
    Jensen HD, Krogfelt KA, Cornett C, Hansen SH, Christensen SB (2002) J Agric Food Chem 50(23):6871–6874CrossRefGoogle Scholar
  63. 63.
    Latti AK, Riihinen KR, Jaakola L (2011) Phytochemistry 72(8):810–815CrossRefGoogle Scholar
  64. 64.
    Radulovic N, Blagojevic P, Palic R (2010) Molecules 15(9):6168–6185CrossRefGoogle Scholar
  65. 65.
    Vazquez-Araujo L, Chambers E, Adhikari K, Carbonell-Barrachina AA (2010) J Food Sci 75(7):S398–S404CrossRefGoogle Scholar
  66. 66.
    James DP (1952) Br J Nutr 6(4):341–356CrossRefGoogle Scholar
  67. 67.
    Roje S (2007) Phytochemistry 68(14):1904–1921CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • Mark S. Lowenthal
    • 1
  • Melissa M. Phillips
    • 1
  • Catherine A. Rimmer
    • 1
  • Paul A. Rudnick
    • 2
  • Yamil Simón-Manso
    • 2
  • Stephen E. Stein
    • 2
  • Dmitrii Tchekhovskoi
    • 2
  • Karen W. Phinney
    • 1
  1. 1.Analytical Chemistry Division, National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Chemical and Biochemical Reference Data Division, National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations