Advertisement

Analytical and Bioanalytical Chemistry

, Volume 404, Issue 6–7, pp 1959–1966 | Cite as

Application of the molecularly imprinted solid-phase extraction to the organophosphate residues determination in strawberries

  • Isabela Mendes Baldim
  • Marília Cristina de Oliveira Souza
  • João Carlos Jacinto da Cunha Souza
  • Eduardo Costa Figueiredo
  • Isarita MartinsEmail author
Original Paper

Abstract

This study describe an analytical method employing gas chromatography (GC) using flame photometric detection that has been developed for the simultaneous determination of organophosphate pesticides (diazinon, disulfoton, parathion, chlorpyrifos and malathion) in strawberry samples. For this purpose, molecularly imprinted solid-phase extraction was applied as a sample preparation technique. The method was linear in the ranges from 0.10 to 1.00 μg g−1, for diazinon, disulfoton, parathion and chlorpyrifos, and 0.10 to 2.00 μg g−1 for malathion with r > 0.99. The detection limits (LD) ranged from 0.02 to 0.05 μg g−1. Recovery studies yielded average recoveries in the range of 65.25 to 87.70 %. These results showed the potential of this technique for organophosphate residue monitoring in strawberry samples.

Keywords

Molecularly imprinted polymer Solid-phase extraction Organophosphate residues Strawberry GC-FPD 

Notes

Acknowledgement

This research was supported by the National Council for Scientific and Technological Development (CNPq)/Brazil, the Minas Gerais State Research Foundation (Fapemig) (process number CDS-PPM-00055-09), the Coordination for the Improvement of Higher Education Personnel (Capes) and the Federal University of Alfenas (UNIFAL-MG).

References

  1. 1.
    Kolberg DI, Prestes OD, Adaime MB, Zanella R (2011) Food Chem 125:1436–1442CrossRefGoogle Scholar
  2. 2.
    Walorczyk S (2007) J Chromatogr A 1165:200–212CrossRefGoogle Scholar
  3. 3.
    Pang GF, Cao YZ, Zhang JJ, Fan CL, Liu YM, Li XM et al (2006) J Chromatogr A 1125:1–30CrossRefGoogle Scholar
  4. 4.
    Koesukwiwat U, Lehotay SJ, Miao S, Leepipatpiboon N (2010) J Chromatogr A 1217:6692–6703CrossRefGoogle Scholar
  5. 5.
    Chai MK, Tan GH (2009) Food Chem 117:561–567CrossRefGoogle Scholar
  6. 6.
    Khalili-Zanjani MR, Yamini Y, Yazdanfar N, Shariat S (2008) Anal Chim Acta 606:202–208CrossRefGoogle Scholar
  7. 7.
    Kumari B, Madan VK, Kathpal TS (2006) Environ Monit Assess 123:407–412CrossRefGoogle Scholar
  8. 8.
    Kirchner M, Huskova R, Matisova E, Mocak J (2008) J Chromatogr A 1186:271–280CrossRefGoogle Scholar
  9. 9.
    Bolaños PP, Moreno JLF, Shtereva DD, Frenich AG, Vidal JLM (2007) Rapid Commun Mass Sp 21:2282–2294CrossRefGoogle Scholar
  10. 10.
    Kmellar B, Fodor P, Pareja L, Ferrer C, Martinesz-Uroz MA, Valverde A, Fernandez-Alba AR (2008) J Chromatogr A 1215:37–50CrossRefGoogle Scholar
  11. 11.
    de Barros LA, Martins I, Rath S (2010) Anal Bioanal Chem 397:1355–136CrossRefGoogle Scholar
  12. 12.
    Turiel E, Martín-Esteban A (2010) Anal Chim Acta 668:87–99CrossRefGoogle Scholar
  13. 13.
    Pichon V, Chapuis-Hugon F (2008) Anal Chim Acta 622:48–61CrossRefGoogle Scholar
  14. 14.
    Jing T, Gao XD, Wang P, Wang Y, Lin YF, Hu XZ, Hao QL, Zhou YZ, Mei SR (2009) Anal Bioanal Chem 393:2009–2018CrossRefGoogle Scholar
  15. 15.
    Turiel E, Tadeo JL, Cormack PAG, Martin-Esteban A (2005) Analyst 130:1601–1607CrossRefGoogle Scholar
  16. 16.
    Turiel E, Martín-Esteban A, Fernández P, Pérez-Conde C, Cámara C (2001) Anal Chem 73:5133–5141CrossRefGoogle Scholar
  17. 17.
    Tamayo FG, Casillas JL, Martín-Esteban A (2003) Anal Chim Acta 482:165–173CrossRefGoogle Scholar
  18. 18.
    Shin Y, Ryu J-A, Liu RH, Nock JF, Watkins CB (2008) Postharvest Biol Tec 49:201–209CrossRefGoogle Scholar
  19. 19.
    Amuda OS, Giwa AA, Bello I (2007) Biochem Eng J 36:174–181CrossRefGoogle Scholar
  20. 20.
    Kalavathy MH, Karthikeyan T, Rajgopal S, Miranda LR (2005) J Colloid Interface Sci 292:354–362CrossRefGoogle Scholar
  21. 21.
    Chagas AP (1999) Termodinâmica química. Unicamp, CampinasGoogle Scholar
  22. 22.
    ICH-International Conference on Harmonization (2005). Validation of Analytical Procedures: Text and Methodology Q2(R1)Google Scholar
  23. 23.
    SANCO (2011). Method validation and quality control procedures for pesticide residues analysis in food and feed. Document no. SANCO/12495/2011Google Scholar
  24. 24.
    Brazil. Ministry of Agriculture, Livestock and Supply. Department of Agricultural Defense. Normative Instruction no 24. Brasilia, DF, 2009Google Scholar
  25. 25.
    Tamayo FG, Martín-Esteban A (2005) J Chromatogr A 1098:116–122CrossRefGoogle Scholar
  26. 26.
    Yao J, Li X, Qin W (2008) Anal Chim Acta 610(2):282–288CrossRefGoogle Scholar
  27. 27.
    PPDB Pesticide Properties DataBase (accessed April 2011) http://sitem.herts.ac.uk/aeru/footprint/en/index.htm
  28. 28.
    Zhu X, Yang J, Sua Q, Cai J, Gao Y (2005) J Chromatogr A 1092:161–169CrossRefGoogle Scholar
  29. 29.
    Umpleby RJ II, Baxter SC, Rampey AM, Rushton GT, Chen Y, Shimizu KD (2004) J Chromatogr B 804:141–149CrossRefGoogle Scholar
  30. 30.
    Brazil. Ministry of Health: Program of Analysis of Pesticide Residues in Food. Brasilia, DF, 2011Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Isabela Mendes Baldim
    • 1
  • Marília Cristina de Oliveira Souza
    • 1
  • João Carlos Jacinto da Cunha Souza
    • 1
  • Eduardo Costa Figueiredo
    • 1
  • Isarita Martins
    • 1
    Email author
  1. 1.Laboratory of Toxicants and Drug Analysis—LATF, Faculty of Pharmaceutical SciencesFederal University of Alfenas—Unifal-MGAlfenasBrazil

Personalised recommendations