Analytical and Bioanalytical Chemistry

, Volume 404, Issue 6–7, pp 2087–2090 | Cite as

Pulsed supersonic beams with nucleobases

  • Adnan Sarfraz
  • Klaus Rademann
  • Wolfgang Christen
Technical Note


The dissolution of the primary nucleobases in supercritical fluids has been investigated using pulsed molecular beam mass spectrometry. Due to the low critical temperatures of ethylene and carbon dioxide, their adiabatic jet expansion permits transferring thermally sensitive solutes into the gas phase. This feature is particularly attractive for pharmaceutical and biomedical applications. In this study, adenine, guanine, cytosine, thymine, and uracil have been dissolved in supercritical ethylene with a few percent of ethanol as cosolvent. At source temperatures of 313 K, these solutions have been expanded from supercritical pressures into high vacuum using a customized pulsed nozzle. A mass spectrometer was used to monitor the relative amounts of solute, solvent, and cosolvent in the supersonic beam. The results suggest a paramount influence of the cosolvent.


Biomolecules Nucleobases Solubility Supercritical fluids Supersonic beams 



This work has been financially supported by grant CH262/5 from the Deutsche Forschungsgemeinschaft and also from the Max Planck Society through the “International Max Planck Research School: Complex Surfaces in Material Science” at the Fritz Haber Institute Berlin.


  1. 1.
    Scoles G (ed) (1988) Atomic and molecular beam methods. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Pauly H (2000) Atom, molecule, and cluster beams. Springer, New YorkGoogle Scholar
  3. 3.
    Campargue R (ed) (2001) Atomic and molecular beams. Springer, New YorkGoogle Scholar
  4. 4.
    Randall LG, Wahrhaftig AL (1978) Anal Chem 50:1703CrossRefGoogle Scholar
  5. 5.
    Shinozaki H, Oguchi T, Suzuki S, Aoki K, Sako T, Morishita S, Tozuka Y, Moribe K, Yamamoto K (2006) Drug Dev Ind Pharm 32:877CrossRefGoogle Scholar
  6. 6.
    Subramaniam B, Rajewski RA, Snavely K (1997) J Pharm Sci 86:885CrossRefGoogle Scholar
  7. 7.
    Christen W, Geggier S, Grigorenko S, Rademann K (2004) Rev Sci Instrum 75:5048CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Wodtke AM (2005) Anal Chem 77:7612CrossRefGoogle Scholar
  9. 9.
    Christen W, Krause T, Rademann K (2008) Int J Mass Spectrom 277:305Google Scholar
  10. 10.
    Christen W, Rademann K, Even U (2006) J Chem Phys 125:174307CrossRefGoogle Scholar
  11. 11.
    De Dea S, Miller DR, Continetti RE (2009) J Phys Chem A 113:388CrossRefGoogle Scholar
  12. 12.
    Östblom M, Liedberg B, Demers LM, Mirkin CA (2005) J Phys Chem B 109:15150CrossRefGoogle Scholar
  13. 13.
    Kershner RJ, Bozano LD, Micheel CM, Hung AM, Fornof AR,Cha JN, Rettner CT, Bersani M, Frommer J, Rothemund PWK, Wallraff GM (2009) Nature Nanotech 4:557CrossRefGoogle Scholar
  14. 14.
    Huang S, Chang S, He J, Zhang P, Liang F, Tuchband M, Li S, Lindsay S (2010) J Phys Chem C 114:20443CrossRefGoogle Scholar
  15. 15.
    Singh P, Toma FM, Kumar J, Venkatesh V, Raya J, Prato M, Verma S, Bianco A (2011) Chem Eur J 17:6772CrossRefGoogle Scholar
  16. 16.
    Mozejko P, Sanche L (2003) Radiat Environ Biophys 42:201CrossRefGoogle Scholar
  17. 17.
    Stein SE (2010) Mass spectra in NIST Chemistry WebBook, NIST standard reference database number 69. In: PJ Linstrom and WG Mallard (eds), National Institute of Standards and Technology, Gaithersburg MDGoogle Scholar
  18. 18.
    Dobbs JM, Wong JM, Lahiere RJ, Johnston KP (1987) Ind Eng Chem Res 26:1CrossRefGoogle Scholar
  19. 19.
    Ting SST, Tomasko DL, Foster NR, Macnaughton SJ (1993) Ind Eng Chem Res 32:1471CrossRefGoogle Scholar
  20. 20.
    Huang Z, Lu WD, Kawi S, Chiew YC (2004) J Chem Eng Data 49:1323CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Adnan Sarfraz
    • 1
  • Klaus Rademann
    • 1
  • Wolfgang Christen
    • 1
  1. 1.Institut für ChemieHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations