Pulsed supersonic beams with nucleobases

  • 160 Accesses

  • 2 Citations


The dissolution of the primary nucleobases in supercritical fluids has been investigated using pulsed molecular beam mass spectrometry. Due to the low critical temperatures of ethylene and carbon dioxide, their adiabatic jet expansion permits transferring thermally sensitive solutes into the gas phase. This feature is particularly attractive for pharmaceutical and biomedical applications. In this study, adenine, guanine, cytosine, thymine, and uracil have been dissolved in supercritical ethylene with a few percent of ethanol as cosolvent. At source temperatures of 313 K, these solutions have been expanded from supercritical pressures into high vacuum using a customized pulsed nozzle. A mass spectrometer was used to monitor the relative amounts of solute, solvent, and cosolvent in the supersonic beam. The results suggest a paramount influence of the cosolvent.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 157

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Scoles G (ed) (1988) Atomic and molecular beam methods. Oxford University Press, New York

  2. 2.

    Pauly H (2000) Atom, molecule, and cluster beams. Springer, New York

  3. 3.

    Campargue R (ed) (2001) Atomic and molecular beams. Springer, New York

  4. 4.

    Randall LG, Wahrhaftig AL (1978) Anal Chem 50:1703

  5. 5.

    Shinozaki H, Oguchi T, Suzuki S, Aoki K, Sako T, Morishita S, Tozuka Y, Moribe K, Yamamoto K (2006) Drug Dev Ind Pharm 32:877

  6. 6.

    Subramaniam B, Rajewski RA, Snavely K (1997) J Pharm Sci 86:885

  7. 7.

    Christen W, Geggier S, Grigorenko S, Rademann K (2004) Rev Sci Instrum 75:5048

  8. 8.

    Zhang Q, Wodtke AM (2005) Anal Chem 77:7612

  9. 9.

    Christen W, Krause T, Rademann K (2008) Int J Mass Spectrom 277:305

  10. 10.

    Christen W, Rademann K, Even U (2006) J Chem Phys 125:174307

  11. 11.

    De Dea S, Miller DR, Continetti RE (2009) J Phys Chem A 113:388

  12. 12.

    Östblom M, Liedberg B, Demers LM, Mirkin CA (2005) J Phys Chem B 109:15150

  13. 13.

    Kershner RJ, Bozano LD, Micheel CM, Hung AM, Fornof AR,Cha JN, Rettner CT, Bersani M, Frommer J, Rothemund PWK, Wallraff GM (2009) Nature Nanotech 4:557

  14. 14.

    Huang S, Chang S, He J, Zhang P, Liang F, Tuchband M, Li S, Lindsay S (2010) J Phys Chem C 114:20443

  15. 15.

    Singh P, Toma FM, Kumar J, Venkatesh V, Raya J, Prato M, Verma S, Bianco A (2011) Chem Eur J 17:6772

  16. 16.

    Mozejko P, Sanche L (2003) Radiat Environ Biophys 42:201

  17. 17.

    Stein SE (2010) Mass spectra in NIST Chemistry WebBook, NIST standard reference database number 69. In: PJ Linstrom and WG Mallard (eds), National Institute of Standards and Technology, Gaithersburg MD

  18. 18.

    Dobbs JM, Wong JM, Lahiere RJ, Johnston KP (1987) Ind Eng Chem Res 26:1

  19. 19.

    Ting SST, Tomasko DL, Foster NR, Macnaughton SJ (1993) Ind Eng Chem Res 32:1471

  20. 20.

    Huang Z, Lu WD, Kawi S, Chiew YC (2004) J Chem Eng Data 49:1323

Download references


This work has been financially supported by grant CH262/5 from the Deutsche Forschungsgemeinschaft and also from the Max Planck Society through the “International Max Planck Research School: Complex Surfaces in Material Science” at the Fritz Haber Institute Berlin.

Author information

Correspondence to Wolfgang Christen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarfraz, A., Rademann, K. & Christen, W. Pulsed supersonic beams with nucleobases. Anal Bioanal Chem 404, 2087–2090 (2012).

Download citation


  • Biomolecules
  • Nucleobases
  • Solubility
  • Supercritical fluids
  • Supersonic beams