Advertisement

Analytical and Bioanalytical Chemistry

, Volume 404, Issue 10, pp 2797–2806 | Cite as

New luminescent oxygen-sensing and temperature-sensing materials based on gadolinium(III) and europium(III) complexes embedded in an acridone–polystyrene conjugate

  • Sergey M. BorisovEmail author
  • I. Klimant
Original Paper

Abstract

New sensing materials have been developed which rely on the use of luminescent europium(III) and gadolinium(III) complexes with thenoylacetylacetonate embedded in an acridone–polystyrene conjugate. Acridone acts as an antenna which efficiently absorbs violet light. Covalent coupling to the polystyrene backbone prevents aggregation and enables very high antenna loading (16 % w/w). Energy transfer from the antenna to the lanthanide complexes results in efficient red luminescence from the Eu(III) complex or green phosphorescence originating from the Gd(III) chelate. The luminescence of the material based on the Eu(III) complex is only slightly affected by oxygen but is highly sensitive to temperature under physiological conditions (20–40 °C). The Gd(III) complex has long phosphorescence decay times of approximately 1 ms and high sensitivity to oxygen. Ultra-thin (250 nm) sensing layers with sufficient absorption at the excitation wavelength enable monitoring of rapid oxygen changes virtually in real time. Immobilization of both complexes in a single matrix results in a dual-luminescence material with emissions almost ideally matching the red and green channels of a digital camera. Thus, oxygen imaging using a very simple and inexpensive set-up can be realized. Additionally, the material can be used for simultaneous sensing of oxygen and temperature.

Figure

Phosphorescent oxygen-sensing material based on a gadolinium(III) complex

Keywords

Europium Gadolinium Luminescence Acridone Oxygen sensor Temperature sensor 

Notes

Acknowledgements

The authors thank Gerda Winterleitner from the Institute of Analytical Chemistry and Food Chemistry for technical support. Financial support from the European Research Council (Project “Oxygen”, N 207233) is gratefully acknowledged.

Supplementary material

216_2012_6244_MOESM1_ESM.pdf (711 kb)
ESM 1 (PDF 711 kb)
ESM 2

(MPG 4.85 mb)

References

  1. 1.
    Bünzli J-CG (2010) Chem Rev 110:2729–2755CrossRefGoogle Scholar
  2. 2.
    Yuan J, Wang G (2005) J Fluoresc 15:559–568CrossRefGoogle Scholar
  3. 3.
    Chen Y, Lu Z (2007) Anal Chim Acta 587:180–186CrossRefGoogle Scholar
  4. 4.
    Nishioka T, Yuan J, Yamamoto Y, Sumitomo K, Wang Z, Hashino K, Hosoya C, Ikawa K, Wang G, Matsumoto K (2006) Inorg Chem 45:4088–4096CrossRefGoogle Scholar
  5. 5.
    Soukka T, Paukkunen J, Harma H, Lonnberg S, Lindroos H, Lovgren T (2001) Clin Chem 47:1269–1278Google Scholar
  6. 6.
    Jiang H, Wang G, Zhang W, Liu X, Ye Z, Jin D, Yuan J, Liu Z (2010) J Fluoresc 20:321–328CrossRefGoogle Scholar
  7. 7.
    Tan M, Ye Z, Wang G, Yuan J (2004) Chem Mater 16:2494–2498CrossRefGoogle Scholar
  8. 8.
    Kokko L, Sandberg K, Lövgren T, Soukka T (2004) Anal Chim Acta 503:155–162CrossRefGoogle Scholar
  9. 9.
    Xu Y, Li Q (2007) Clin Chem 53:1503–1510CrossRefGoogle Scholar
  10. 10.
    Wu J, Ye Z, Wang G, Yuan J (2007) Talanta 72:1693–1697CrossRefGoogle Scholar
  11. 11.
    Kokko L, Lövgren T, Soukka T (2007) Anal Chim Acta 585:17–23CrossRefGoogle Scholar
  12. 12.
    Wu J, Wang G, Jin D, Yuan J, Guan Y, Piper J (2008) Chem Commun 365–367Google Scholar
  13. 13.
    Hemmila I, Laitala V (2005) J Fluoresc 15:529–542CrossRefGoogle Scholar
  14. 14.
    Mitsuishi M, Kikuchi S, Miyashita T, Amao Y (2003) J Mater Chem 13:2875–2879CrossRefGoogle Scholar
  15. 15.
    Zelelow B, Khalil GE, Phelan G, Carlson B, Gouterman M, Callis JB, Dalton LR (2003) Sens Actuators B 96:304–314CrossRefGoogle Scholar
  16. 16.
    Borisov SM, Wolfbeis OS (2006) Anal Chem 78:5094–5101CrossRefGoogle Scholar
  17. 17.
    Stich MIJ, Nagl S, Wolfbeis OS, Henne U, Schaeferling M (2008) Adv Funct Mater 18:1399–1406CrossRefGoogle Scholar
  18. 18.
    Stich MIJ, Schaeferling M, Wolfbeis OS (2009) Adv Mater 21:2216–2220CrossRefGoogle Scholar
  19. 19.
    Borisov S, Klimant I (2008) J Fluoresc 18:581–589CrossRefGoogle Scholar
  20. 20.
    Amao Y, Okura I, Miyashita T (2000) Chem Lett 934–935Google Scholar
  21. 21.
    Amao Y, Okura I, Miyashita T (2000) Bull Chem Soc Jpn 73:2663–2668CrossRefGoogle Scholar
  22. 22.
    Pal R, Parker D (2007) Chem Commun 474–476Google Scholar
  23. 23.
    Hynes J, O’Riordan TC, Zhdanov AV, Uray G, Will Y, Papkovsky DB (2009) Anal Biochem 390:21–28CrossRefGoogle Scholar
  24. 24.
    Lobnik A, Majcen N, Niederreiter K, Uray G (2001) Sens Actuators B 74:200–206CrossRefGoogle Scholar
  25. 25.
    Wolfbeis OS, Dürkop A, Wu M, Lin Z (2002) Angew Chem Int Ed 41:4495–4498CrossRefGoogle Scholar
  26. 26.
    Yang C, Fu L-M, Wang Y, Zhang J-P, Wong W-T, Ai X-C, Qiao Y-F, Zou B-S, Gui L-L (2004) Angew Chem Int Ed 116:5120–5123CrossRefGoogle Scholar
  27. 27.
    Werts MHV, Duin MA, Hofstraat JW, Verhoeven JW (1999) Chem Commun 799–800Google Scholar
  28. 28.
    Deiters E, Gumy F, Bünzli J-CG (2010) Eur J Inorg Chem 2010:2723–2734CrossRefGoogle Scholar
  29. 29.
    Dadabhoy A, Faulkner S, Sammes PG (2000) J Chem Soc Perkin Trans 2:2359–2360Google Scholar
  30. 30.
    Dadabhoy A, Faulkner S, Sammes PG (2002) J Chem Soc Perkin Trans 2:348–357Google Scholar
  31. 31.
    Bretonniere Y, Cann MJ, Parker D, Slater R (2004) Org Biomol Chem 2:1624–1632CrossRefGoogle Scholar
  32. 32.
    Imperio D, Giovenzana GB, Law G, Parker D, Walton JW (2010) Dalton Trans 39:9897–9903CrossRefGoogle Scholar
  33. 33.
    Parker D, Walton JW, Lamarque L, Zwier JM (2010) Eur J Inorg Chem 2010:3961–3966CrossRefGoogle Scholar
  34. 34.
    Kielar F, Congreve A, Law G, New EJ, Parker D, Wong K-L, Castreňo P, de Mendoza J (2008) Chem Commun 2435–2437Google Scholar
  35. 35.
    Atkinson P, Findlay KS, Kielar F, Pal R, Parker D, Poole RA, Puschmann H, Richardson SL, Stenson PA, Thompson AL, Yu J (2006) Org Biomol Chem 4:1707–1722CrossRefGoogle Scholar
  36. 36.
    Parker D, Yu J (2005) Chem Commun 3141–3143Google Scholar
  37. 37.
    Pålsson L-O, Pal R, Murray BS, Parker D, Beeby A (2007) Dalton Trans 5726–5734Google Scholar
  38. 38.
    Deun RV, Nockemann P, Fias P, Hecke KV, Meervelt LV, Binnemans K (2005) Chem Commun 590–592Google Scholar
  39. 39.
    Strasser A, Vogler A (2003) Chem Phys Lett 379:287–290CrossRefGoogle Scholar
  40. 40.
    Strasser A, Vogler A (2004) Inorg Chim Acta 357:2345–2348CrossRefGoogle Scholar
  41. 41.
    Raymond KN, Pierre VC (2005) Bioconj Chem 16:3–8CrossRefGoogle Scholar
  42. 42.
    Floyd WC, Klemm PJ, Smiles DE, Kohlgruber AC, Pierre VC, Mynar JL, Fréchet JMJ, Raymond KN (2011) J Am Chem Soc 133:2390–2393CrossRefGoogle Scholar
  43. 43.
    Malta OL, Brito HF, Menezes JFS (1998) Gonçalves e Silva FR, de Mello Donegá C, Alves Jr S. Chem Phys Lett 282:233–238CrossRefGoogle Scholar
  44. 44.
    Bhaumik ML (1964) J Chem Phys 40:3711–3715CrossRefGoogle Scholar
  45. 45.
    Brown R, Lahey F (1950) Aust J Chem 3:593–614CrossRefGoogle Scholar
  46. 46.
    Borisov SM, Gatterer K, Bitschnau B, Klimant I (2010) J Phys Chem C 114:9118–9124CrossRefGoogle Scholar
  47. 47.
    Borisov SM, Nuss G, Klimant I (2008) Anal Chem 80:9435–9442CrossRefGoogle Scholar
  48. 48.
    Borisov SM, Klimant I (2007) Anal Chem 79:7501–7509CrossRefGoogle Scholar
  49. 49.
    Stich MIJ, Borisov SM, Henne U, Schäferling M (2009) Sens Actuators B 139:204–207CrossRefGoogle Scholar
  50. 50.
    Wang X, Meier RJ, Link M, Wolfbeis OS (2010) Angew Chem Int Ed 49:4907–4909CrossRefGoogle Scholar
  51. 51.
    Larsen M, Borisov SM, Grunwald B, Klimant I, Glud RN (2011) Limnol Oceanogr: Methods 9:348–360CrossRefGoogle Scholar
  52. 52.
    Wang X, Zhou T, Song X, Jiang Y, Yang CJ, Chen X (2011) J Mater Chem 21:17651–17653CrossRefGoogle Scholar
  53. 53.
    Nagl S, Wolfbeis OS (2007) Analyst 132:507–511CrossRefGoogle Scholar
  54. 54.
    Stich MIJ, Fischer LH, Wolfbeis OS (2010) Chem Soc Rev 39:3102–3114CrossRefGoogle Scholar
  55. 55.
    Hradil J, Davis C, Mongey K, McDonagh C, MacCraith BD (2002) Meas Sci Technol 13:1552–1557CrossRefGoogle Scholar
  56. 56.
    Borisov SM, Vasylevska AS, Krause C, Wolfbeis OS (2006) Adv Funct Mater 16:1536–1542CrossRefGoogle Scholar
  57. 57.
    Stich MIJ, Nagl S, Wolfbeis OS, Henne U, Schaeferling M (2008) Adv Funct Mater 18:1399–1406CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute of Analytical Chemistry and Food ChemistryGraz University of TechnologyGrazAustria

Personalised recommendations