Analytical and Bioanalytical Chemistry

, Volume 404, Issue 5, pp 1389–1397 | Cite as

Direct and quantitative analysis of underivatized acylcarnitines in serum and whole blood using paper spray mass spectrometry

  • Qian Yang
  • Nicholas E. Manicke
  • He Wang
  • Christopher Petucci
  • R. Graham Cooks
  • Zheng Ouyang
Original Paper


A simple protocol for rapid quantitation of acylcarnitines in serum and whole blood has been developed using paper spray mass spectrometry. Dried serum and whole blood containing a mixture of ten acylcarnitines at various concentrations were analyzed as spots from paper directly without any sample pretreatment, separation, or derivatization. The composition of the spray solvent was found to be a critical factor: for serum samples, spray solvent of methanol/water/formic acid (80:20:0.1) gave the best signal intensity while for blood samples which contain more matrix components, acetonitrile/water (90:10) was a much more suitable spray solvent. For the paper type and size used, 0.5 μL of sample provided an optimal signal for both serum and whole blood samples. For quantitative profiling, the limits of quantitation obtained from both serum and blood were much lower than the clinically validated cutoff values for diagnosis of fatty acid oxidation disorders in newborn screening. Linearity (R 2 > 0.95) and reproducibility (RSD ∼10 %) were achieved in the concentration ranges from 100 nM to 5 μM for the C2 acylcarnitine, and for other acylcarnitines, these values were from 10 to 500 nM. Acylcarnitine profiles offer an effective demonstration of the fact that paper spray mass spectrometry is an appropriate, simple, rapid method with high sensitivity and high reproducibility applicable to newborn screening tests.


Direct and quantitative analysis of underivatized acylcarnitines in serum and whole blood using paper spray mass spectrometry


Paper spray Ambient ionization Mass spectrometry Acylcarnitines Newborn screening 



This work was supported by the National Science Foundation (CHE 0847205 and CHE 0848650), National Science Foundation Instrumentation Development for Biological Research (DBI 0852740), National Center for Research Resources (5R21RR031246-02) and the National Institute of General Medical Sciences (8 R21 GM103454) from the National Institutes of Health, and the Alfred Mann Institute at Purdue University.


  1. 1.
    Guthrie R, Susi A (1963) A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32(3):338–343Google Scholar
  2. 2.
    Kaye CI, Schaefer GB, Bull MJ, Enns GM, Gruen JR, Hersh JH, Mendelsohn NJ, Saal HM, Goldberg JD, Hanson JW et al (2006) Introduction to the newborn screening fact sheets. Pediatrics 118(3):1304–1312CrossRefGoogle Scholar
  3. 3.
    Sweetman L (1996) Newborn screening by tandem mass spectrometry (MS-MS). Clin Chem 42(3):345–346Google Scholar
  4. 4.
    Watson MS, Mann MY, Lloyd-Puryear MA, Rinaldo P, Howell RR (2006) Newborn screening: toward a uniform screening panel and system. Genet Med 8(Suppl 1):1S–252SCrossRefGoogle Scholar
  5. 5.
    Lindner M, Hoffmann GF, Matern D (2010) Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting. J Inherit Metab Dis 33(5):521–526CrossRefGoogle Scholar
  6. 6.
    Vockley J, Singh RH, Whiteman DAH (2002) Diagnosis and management of defects of mitochondrial beta-oxidation. Curr Opin Clin Nutr 5(6):601–609CrossRefGoogle Scholar
  7. 7.
    Scriver CR (1995) The metabolic and molecular bases of inherited disease, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  8. 8.
    Bieber LL, Choi YR (1977) Isolation and identification of aliphatic short-chain acylcarnitines from beef heart: possible role for carnitine in branched-chain amino acid metabolism. Proc Natl Acad Sci U S A 74(7):2795–2798CrossRefGoogle Scholar
  9. 9.
    Millington DS, Roe CR, Maltby DA (1984) Application of high resolution fast atom bombardment and constant B/E ratio linked scanning to the identification and analysis of acylcarnitines in metabolic disease. Biomed Mass Spectrom 11(5):236–241CrossRefGoogle Scholar
  10. 10.
    Millington DS, Norwood DL, Kodo N, Roe CR, Inoue F (1989) Application of fast atom bombardment with tandem mass-spectrometry and liquid-chromatography mass-spectrometry to the analysis of acylcarnitines in human-urine, blood, and tissue. Anal Biochem 180(2):331–339CrossRefGoogle Scholar
  11. 11.
    VianeySaban C, Guffon N, Delolne F, Guibaud P, Mathieu M, Divry P (1997) Diagnosis of inborn errors of metabolism by acylcarnitine profiling in blood using tandem mass spectrometry. J Inherit Metab Dis 20(3):411–414CrossRefGoogle Scholar
  12. 12.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246(4926):64–71CrossRefGoogle Scholar
  13. 13.
    Ghoshal AK, Guo TD, Soukhova N, Soldin SJ (2005) Rapid measurement of plasma acylcarnitines by liquid chromatography–tandem mass spectrometry without derivatization. Clin Chim Acta 358(1–2):104–112CrossRefGoogle Scholar
  14. 14.
    Vreken P, van Lint AEM, Bootsma AH, Overmars H, Wanders RJA, van Gennip AH (1999) Quantitative plasma acylcarnitine analysis using electrospray tandem mass spectrometry for the diagnosis of organic acidaemias and fatty acid oxidation defects. J Inherit Metab Dis 22(3):302–306CrossRefGoogle Scholar
  15. 15.
    Chace DH, DiPierna JC, Mitchell BL, Sgroi B, Hofman LF, Naylor EW (2001) Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem 47(7):1166–1182Google Scholar
  16. 16.
    Chace DH, Hillman SL, Shushan B, Corr JJ (1997) Multiple metabolic profiles from dried filter paper blood spots using electrospray tandem mass spectrometry. Clin Chem 43(Suppl 6):436–436Google Scholar
  17. 17.
    Rashed MS, Ozand PT, Bucknall MP, Little D (1995) Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. Pediatr Res 38(3):324–331CrossRefGoogle Scholar
  18. 18.
    Rashed MS, Bucknall MP, Little D, Awad A, Jacob M, Alamoudi M, Alwattar M, Ozand PT (1997) Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin Chem 43(7):1129–1141Google Scholar
  19. 19.
    Smith EH, Matern D (2010) Acylcarnitine analysis by tandem mass spectrometry. Curr Protoc Hum Genet Chapter 17: Unit 17.8, 1–20Google Scholar
  20. 20.
    Cooks RG, Ouyang Z, Takáts Z, Wiseman JM (2006) Ambient mass spectrometry. Science 311(5767):1566–1570CrossRefGoogle Scholar
  21. 21.
    Ouyang Z, Zhang XR (2010) Ambient mass spectrometry. Analyst 135(4):659–660CrossRefGoogle Scholar
  22. 22.
    Harris GA, Galhena AS, Fernandez FM (2011) Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem 83(12):4508–4538CrossRefGoogle Scholar
  23. 23.
    Takáts Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473CrossRefGoogle Scholar
  24. 24.
    Cody RB, Laramee JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77(8):2297–2302CrossRefGoogle Scholar
  25. 25.
    Chen HW, Gamez G, Zenobi R (2009) What can we learn from ambient ionization techniques? J Am Soc Mass Spectrom 20(11):1947–1963CrossRefGoogle Scholar
  26. 26.
    Van Berkel GJ, Pasilis SP, Ovchinnikova O (2008) Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. J Mass Spectrom 43(9):1161–1180CrossRefGoogle Scholar
  27. 27.
    Venter A, Nefliu M, Cooks RG (2008) Ambient desorption ionization mass spectrometry. Trends Anal Chem 27(4):284–290CrossRefGoogle Scholar
  28. 28.
    Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79(21):8098–8106CrossRefGoogle Scholar
  29. 29.
    Sampson JS, Hawkridge AM, Muddiman DC (2008) Construction of a versatile high precision ambient ionization source for direct analysis and imaging. J Am Soc Mass Spectrom 19(10):1527–1534CrossRefGoogle Scholar
  30. 30.
    Sampson JS, Hawkridge AM, Muddiman DC (2008) Development and characterization of an ionization technique for analysis of biological macromolecules: liquid matrix-assisted laser desorption electrospray ionization. Anal Chem 80(17):6773–6778CrossRefGoogle Scholar
  31. 31.
    Shiea J, Huang M-Z, HSu H-J, Lee C-Y, Yuan C-H, Beech I, Sunner J (2005) Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun Mass Sp 19(24):3701–3704CrossRefGoogle Scholar
  32. 32.
    Nemes P, Vertes A (2012) Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. Trends Anal Chem 34:22–34CrossRefGoogle Scholar
  33. 33.
    Wang H, Liu JJ, Cooks RG, Ouyang Z (2010) Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int Ed 49(5):877–880CrossRefGoogle Scholar
  34. 34.
    Liu JJ, Wang H, Manicke NE, Lin JM, Cooks RG, Ouyang Z (2010) Development, characterization, and application of paper spray ionization. Anal Chem 82(6):2463–2471CrossRefGoogle Scholar
  35. 35.
    Manicke NE, Abu-Rabie P, Spooner N, Ouyang Z, Cooks RG (2011) Quantitative analysis of therapeutic drugs in dried blood spot samples by paper spray mass spectrometry: an avenue to therapeutic drug monitoring. J Am Soc Mass Spectrom 22(9):1501–1507CrossRefGoogle Scholar
  36. 36.
    Manicke NE, Yang Q, Wang H, Oradu S, Ouyang Z, Cooks RG (2011) Assessment of paper spray ionization for quantitation of pharmaceuticals in blood spots. Int J Mass Spectrom 300(2–3):123–129Google Scholar
  37. 37.
    Wang H, Manicke NE, Yang QA, Zheng LX, Shi RY, Cooks RG, Zheng OY (2011) Direct analysis of biological tissue by paper spray mass spectrometry. Anal Chem 83(4):1197–1201CrossRefGoogle Scholar
  38. 38.
    Cooks RG, Manicke NE, Dill AL, Ifa DR, Eberlin LS, Costa AB, Wang H, Huang G, Ouyang Z (2011) New ionization methods and miniature mass spectrometers for biomedicine: DESI imaging for cancer diagnostics and paper spray ionization for therapeutic drug monitoring. Faraday Discuss 149:247–267CrossRefGoogle Scholar
  39. 39.
    Spooner N, Lad R, Barfield M (2009) Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: considerations for the validation of a quantitative bioanalytical method. Anal Chem 81(4):1557–1563CrossRefGoogle Scholar
  40. 40.
    Nada MA, Vianey-Saban C, Roe CR, Ding JH, Mathieu M, Wappner RS, Bialer MG, McGlynn JA, Mandon G (1996) Prenatal diagnosis of mitochondrial fatty acid oxidation defects. Prenat Diag 16(2):117–124CrossRefGoogle Scholar
  41. 41.
    Rashed MS, Ozand PT, Bennett MJ, Barnard JJ, Govindaraju DR, Rinaldo P (1995) Inborn errors of metabolism diagnosed in sudden death cases by acylcarnitine analysis of postmortem bile. Clin Chem 41(8):1109–1114Google Scholar
  42. 42.
    Lowes S, Rose ME (1990) Simple urinary acylcarnitine profiling by gas-chromatography mass-spectrometry. Philos T Roy Soc A 333(1628):169–170CrossRefGoogle Scholar
  43. 43.
    Fingerhut R, Ensenauer R, Rochinger W, Arnecke R, Olgemoller B, Roscher AA (2009) Stability of acylcarnitines and free carnitine in dried blood samples: implications for retrospective diagnosis of inborn errors of metabolism and neonatal screening for carnitine transporter deficiency. Anal Chem 81(9):3571–3575CrossRefGoogle Scholar
  44. 44.
    Chace DH (2001) Mass spectrometry in the clinical laboratory. Chem Rev 101(2):445–477CrossRefGoogle Scholar
  45. 45.
    Osorio JH, Pourfarzam M (2010) Hydrolysis of acylcarnitines during measurement in blood and plasma by tandem mass spectrometry. Acta Bioquim Clin L 44(2):189–193Google Scholar
  46. 46.
    Millington DS, Kodo N, Terada N, Roe D, Chace DH (1991) The analysis of diagnostic markers of genetic-disorders in human blood and urine using tandem mass-spectrometry with liquid secondary ion mass-spectrometry. Int J Mass Spectrom 111:211–228CrossRefGoogle Scholar
  47. 47.
    Briand G, Fontaine M, Schubert R, Ricart G, Degand P, Vamecq J (1995) Direct analysis by electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry of standard and urinary acylcarnitines—comparison with fast atom bombardment and gas chromatography chemical ionization mass spectrometry. J Mass Spectrom 30(12):1731–1741CrossRefGoogle Scholar
  48. 48.
    Zhang Z, Xu W, Mancke NE, Cooks RG, Ouyang Z (2012) Silica coated paper substrate for paper-spray analysis of therapeutic drugs in dried blood spots. Anal Chem 84(2):931–938CrossRefGoogle Scholar
  49. 49.
    Yang Q, Wang H, Maas JD, Chappell WJ, Manicke NE, Cooks RG, Ouyang Z (2012) Paper spray ionization devices for direct, biomedical analysis using mass spectrometry. Int J Mass Spectrom 312:201–207CrossRefGoogle Scholar
  50. 50.
    McHugh DMS, Cameron CA, Abdenur JE, Abdulrahman M, Adair O, Al Nuaimi SA, Ahlman H, Allen JJ, Antonozzi I, Archer S et al (2011) Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genet Med 13(3):230–254CrossRefGoogle Scholar
  51. 51.
    Ouyang Z, Cooks GR, Hertig J, Chen T, Manicke NE, Li L, Chen C, Liu JJ (2012) Proof-of-concept development of a personal mass spectrometer. 60th ASMS Conference on Mass Spectrometry and Allied Topics, Vacouver, CA, May 20–24, 2012Google Scholar
  52. 52.
    Manicke NE, Espy R, Liu JJ, Hertig J, Ouyang Z, Cooks GR (2012) Analysis of biological samples by paper spray-MS: toward point of care mass spectrometry. 60th ASMS Conference on Mass Spectrometry and Allied Topics, Vancouver, Canada, May 20–24, 2012Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Qian Yang
    • 1
  • Nicholas E. Manicke
    • 2
  • He Wang
    • 1
  • Christopher Petucci
    • 3
  • R. Graham Cooks
    • 2
    • 4
  • Zheng Ouyang
    • 1
    • 4
  1. 1.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of ChemistryPurdue UniversityWest LafayetteUSA
  3. 3.Metabolomics CoreSanford-Burnham Medical Research InstituteOrlandoUSA
  4. 4.Center for Analytical Instrumentation DevelopmentPurdue UniversityWest LafayetteUSA

Personalised recommendations