Advertisement

Analytical and Bioanalytical Chemistry

, Volume 404, Issue 10, pp 2859–2868 | Cite as

Angle-dependent resonance of localized and propagating surface plasmons in microhole arrays for enhanced biosensing

  • Ludovic S. Live
  • Anuj Dhawan
  • Kirsty F. Gibson
  • Hugo-Pierre Poirier-Richard
  • Duncan Graham
  • Michael Canva
  • Tuan Vo-Dinh
  • Jean-François Masson
Original Paper

Abstract

The presence of microhole arrays in thin Au films is suited for the excitation of localized and propagating surface plasmon (SP) modes. Conditions can be established to excite a resonance between the localized and propagating SP modes, which further enhanced the local electromagnetic (EM) field. The co-excitation of localized and propagating SP modes depends on the angle of incidence (θ exc) and refractive index of the solution interrogated. As a consequence of the enhanced EM field, enhanced sensitivity and an improved response for binding events by about a factor of 3 to 5 was observed with SPR sensors in the Kretschmann configuration for a set of experimental conditions (λ SPR, θ exc, and η). Thus, microhole arrays can improve sensing applications of SPR based on classical prism-based instrumentation and are suited for SP-coupled spectroscopic techniques.

Fig

Co-excitation of localized and propagating SP enhances sensitivity of SPR

Keywords

Localized and propagating surface plasmons Enhanced sensitivity Angle-dependent amplification Surface-enhanced Raman scattering Biosensing Microhole arrays 

Supplementary material

216_2012_6195_MOESM1_ESM.pdf (446 kb)
ESM 1 (PDF 445 kb)

References

  1. 1.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539. doi: 10.1007/s00216-003-2101-0 CrossRefGoogle Scholar
  2. 2.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54(1–2):3–15CrossRefGoogle Scholar
  3. 3.
    Haes AJ, Van Duyne RP (2002) A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604. doi: 10.1021/ja020393x CrossRefGoogle Scholar
  4. 4.
    Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29CrossRefGoogle Scholar
  5. 5.
    Fan MK, Andrade GFS, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693(1–2):7–25. doi: 10.1016/j.aca.2011.03.002 CrossRefGoogle Scholar
  6. 6.
    Vo-Dinh T, Wang HN, Scaffidi J (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102. doi: 10.1002/jbio.200910015 Google Scholar
  7. 7.
    Tripp RA, Dluhy RA, Zhao YP (2008) Novel nanostructures for SERS biosensing. Nano Today 3(3–4):31–37CrossRefGoogle Scholar
  8. 8.
    Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62. doi: 10.1016/j.copbio.2005.01.001 CrossRefGoogle Scholar
  9. 9.
    Lakowicz JR (2001) Radiative decay engineering: Biophysical and biomedical applications. Anal Biochem 298(1):1–24. doi: 10.1006/abio.2001.5377 CrossRefGoogle Scholar
  10. 10.
    Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37(5):898–911. doi: 10.1039/b705969h CrossRefGoogle Scholar
  11. 11.
    Osawa M (2001) Surface-enhanced infrared absorption. In: Kawata S (ed) Near-field optics and surface plasmon polaritons. Topics in applied physics, vol 81. Springer, Berlin, pp 163–187CrossRefGoogle Scholar
  12. 12.
    Reilly TH, van de Lagemaat J, Tenent RC, Morfa AJ, Rowlen KL (2008) Surface-plasmon enhanced transparent electrodes in organic photovoltaics. Appl Phys Lett 92 (24). doi:10.1063/1.2938089
  13. 13.
    Cobley CM, Chen J, Cho EC, Wang LV, Xia Y (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40(1):44–56CrossRefGoogle Scholar
  14. 14.
    Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8(12):935–939, http://www.nature.com/nmat/journal/v8/n12/suppinfo/nmat2564_S1.html CrossRefGoogle Scholar
  15. 15.
    Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49(1):569–638. doi: 10.1146/annurev.physchem.49.1.569 CrossRefGoogle Scholar
  16. 16.
    McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057–1062. doi: 10.1021/nl034372s CrossRefGoogle Scholar
  17. 17.
    Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtulus O, Lee SH, Lindquist NC, Oh SH, Haynes CL (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13(24):11551–11567. doi: 10.1039/c0cp01841d CrossRefGoogle Scholar
  18. 18.
    Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. The Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  19. 19.
    Byun KM, Jang SM, Kim SJ, Kim D (2009) Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures. J Opt Soc Am a-Opt Image Sci Vis 26(4):1027–1034CrossRefGoogle Scholar
  20. 20.
    Kim SA, Byun KM, Kim K, Jang SM, Ma K, Oh Y, Kim D, Kim SG, Shuler ML, Kim SJ (2010) Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays. Nanotechnology 21(35). doi: 10.1088/0957-4484/21/35/355503
  21. 21.
    Kelf TA, Sugawara Y, Cole RM, Baumberg JJ, Abdelsalam ME, Cintra S, Mahajan S, Russell AE, Bartlett PN (2006) Localized and delocalized plasmons in metallic nanovoids. Physical Review B 74(24)Google Scholar
  22. 22.
    Coe JV, Heer JM, Teeters-Kennedy S, Tian H, Rodriguez KR (2008) Extraordinary transmission of metal films with arrays of subwavelength holes. Annu Rev Phys Chem 59(1):179–202. doi: 10.1146/annurev.physchem.59.032607.093703 CrossRefGoogle Scholar
  23. 23.
    Yu F, Ahl S, Caminade A-M, Majoral J-P, Knoll W, Erlebacher J (2006) Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal Chem 78(20):7346–7350. doi: 10.1021/ac060829h CrossRefGoogle Scholar
  24. 24.
    Baumberg JJ, Kelf TA, Sugawara Y, Cintra S, Abdelsalam ME, Bartlett PN, Russell AE (2005) Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. Nano Lett 5(11):2262–2267. doi: 10.1021/nl051618f CrossRefGoogle Scholar
  25. 25.
    Du L, Zhang X, Mei T, Yuan X (2010) Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS. Opt Express 18(3):1959–1965CrossRefGoogle Scholar
  26. 26.
    Liu Y, Xu S, Li H, Jian X, Xu W (2011) Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation. Chem Commun (Camb) 47(13):3784–3786. doi: 10.1039/c0cc04988c CrossRefGoogle Scholar
  27. 27.
    Live LS, Masson JF (2009) High sensitivity of plasmonic microstructures near the transition from short-range to propagating surface plasmon. J Phys Chem C 113(23):10052–10060. doi: 10.1021/jp9020273 CrossRefGoogle Scholar
  28. 28.
    Live LS, Murray-Methot MP, Masson JF (2009) Localized and propagating surface plasmons in gold particles of near-micron size. J Phys Chem C 113(1):40–44. doi: 10.1021/jp8104419 CrossRefGoogle Scholar
  29. 29.
    Live LS, Bolduc OR, Masson JF (2010) Propagating surface plasmon resonance on microhole arrays. Anal Chem 82(9):3780–3787. doi: 10.1021/ac100177j CrossRefGoogle Scholar
  30. 30.
    Live LS, Masson JF (2010) High sensitivity of SPR with microplasmonic structures. Plasmonics in Biology and Medicine Vii 7577. doi:10.1117/12.840745
  31. 31.
    Dhawan A, Canva M, Vo-Dinh T (2011) Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt Express 19(2):787–813CrossRefGoogle Scholar
  32. 32.
    Moharam MG, Gaylord TK (1983) Three-dimensional vector coupled-wave analysis of planar-grating diffraction. J Opt Soc Am 73(9):1105–1112CrossRefGoogle Scholar
  33. 33.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607 CrossRefGoogle Scholar
  34. 34.
    Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev (Wash) 111(6):3913–3961. doi: 10.1021/cr200061k CrossRefGoogle Scholar
  35. 35.
    Teperik TV, Popov VV, de Abajo FJG, Abdelsalam M, Bartlett PN, Kelf TA, Sugawara Y, Baumberg JJ (2006) Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons. Opt Express 14(5):1965–1972. doi: 10.1364/oe.14.001965 CrossRefGoogle Scholar
  36. 36.
    Galarreta BC, Rupar I, Young A, Lagugnee-Labarthet F (2011) Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films. J Phys Chem C:null–null. doi:10.1021/jp204402f
  37. 37.
    Qin LD, Zou SL, Xue C, Atkinson A, Schatz GC, Mirkin CA (2006) Designing, fabricating, and imaging Raman hot spots. Proc Natl Acad Sci U S A 103(36):13300–13303. doi: 10.1073/pnas.0605889103 CrossRefGoogle Scholar
  38. 38.
    Stewart ME, Mack NH, Malyarchuk V, Soares J, Lee TW, Gray SK, Nuzzo RG, Rogers JA (2006) Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc Natl Acad Sci U S A 103(46):17143–17148. doi: 10.1073/pnas.0606216103 CrossRefGoogle Scholar
  39. 39.
    Gibson KF, Correia-Ledo D, Couture M, Graham D, Masson JF (2011) Correlated AFM and SERS imaging of the transition from nanotriangle to nanohole arrays. Chem Commun (Camb) 47(12):3404–3406. doi: 10.1039/c0cc05287f CrossRefGoogle Scholar
  40. 40.
    Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 41(8):1049–1057. doi: 10.1021/ar800074d CrossRefGoogle Scholar
  41. 41.
    Kwak ES, Henzie J, Chang SH, Gray SK, Schatz GC, Odom TW (2005) Surface plasmon standing waves in large-area subwavelength hole arrays. Nano Lett 5(10):1963–1967. doi: 10.1021/nl051339s CrossRefGoogle Scholar
  42. 42.
    Teeters-Kennedy S, Williams SM, Rodriguez KR, Cilwa K, Meleason D, Sudnitsyn A, Hrovat F, Coe JV (2006) Extraordinary infrared transmission of a stack of two metal micromeshes. J Phys Chem C 111(1):124–130. doi: 10.1021/jp063745l CrossRefGoogle Scholar
  43. 43.
    Correia-Ledo D, Gibson KF, Dhawan A, Couture M, Vo-Dinh T, Graham D, Masson J-F (2012) Assessing the location of surface plasmons over nanotriangle and nanohole arrays of different size and periodicity. J Phys Chem C 116(12):6884–6892. doi: 10.1021/jp3009018 CrossRefGoogle Scholar
  44. 44.
    Lee SH, Bantz KC, Lindquist NC, Oh S-H, Haynes CL (2009) Self-assembled plasmonic nanohole arrays. Langmuir 25(23):13685–13693. doi: 10.1021/la9020614 CrossRefGoogle Scholar
  45. 45.
    Hou Y, Xu J, Li W, Wang X (2011) Coupled subwavelength gratings for surface-enhanced Raman spectroscopy. Phys Chem Chem Phys 13(23):10946–10951CrossRefGoogle Scholar
  46. 46.
    McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced raman excitation spectroscopy. J Phys Chem B 109(22):11279–11285. doi: 10.1021/jp050508u CrossRefGoogle Scholar
  47. 47.
    Zhang J, Lakowicz JR (2007) Metal-enhanced fluorescence of an organic fluorophore using gold particles. Opt Express 15(5):2598–2606. doi: 10.1364/oe.15.002598 CrossRefGoogle Scholar
  48. 48.
    Bolduc OR, Live LS, Masson JF (2009) High-resolution surface plasmon resonance sensors based on a dove prism. Talanta 77(5):1680–1687. doi: 10.1016/j.talanta.2008.10.006 CrossRefGoogle Scholar
  49. 49.
    Hoa XD, Kirk AG, Tabrizian M (2009) Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings. Biosens Bioelectron 24(10):3043–3048. doi: 10.1016/j.bios.2009.03.021 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ludovic S. Live
    • 1
  • Anuj Dhawan
    • 2
    • 3
    • 4
  • Kirsty F. Gibson
    • 5
  • Hugo-Pierre Poirier-Richard
    • 1
  • Duncan Graham
    • 5
  • Michael Canva
    • 6
  • Tuan Vo-Dinh
    • 2
    • 3
    • 7
  • Jean-François Masson
    • 1
    • 8
  1. 1.Département de chimieUniversité de MontréalMontrealCanada
  2. 2.Fitzpatrick Institute for PhotonicsDuke UniversityDurhamUSA
  3. 3.Department of Biomedical engineeringDuke UniversityDurhamUSA
  4. 4.Department of Electrical EngineeringIndian Institute of Technology-DelhiNew DelhiIndia
  5. 5.Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
  6. 6.Laboratoire Charles Fabry, Institut Optique Graduate SchoolUniversité Paris Sud, CNRSPalaiseauFrance
  7. 7.Department of ChemistryDuke UniversityDurhamUSA
  8. 8.Center for Self-Assembled Chemical StructuresMontrealCanada

Personalised recommendations