Analytical and Bioanalytical Chemistry

, Volume 404, Issue 2, pp 423–432 | Cite as

Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA–MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma

  • F. Remy-Martin
  • M. El Osta
  • G. Lucchi
  • R. Zeggari
  • T. Leblois
  • S. Bellon
  • P. Ducoroy
  • W. Boireau
Original Paper

Abstract

Protein biomarker discovery and validation are crucial for diagnosis, prognosis, and theranostics of human pathologies; “omics” approaches bring new insights in this field. In particular, the combination of immuno-sensors in array format with mass spectrometry efficiently extends the classical immunoassay format and includes molecular characterization. Here, we coupled surface plasmon resonance imaging (SPRi) with MALDI-TOF mass spectrometry in a hyphenated technique which enables multiplexed quantification of binding by SPRi and molecular characterization of interacting partners by subsequent MS analysis. This adds specificity, because MS enables differentiation of molecules that are difficult to distinguish by use of antibodies, for example truncation variants or protein isoforms. Proof of concept was established for detection, identification, and characterization of a potential breast cancer marker, the LAG3 protein, at ~1 μg mL−1, added to human plasma. The analytical performance of this new method, dubbed “SUPRA-MS”, was established, particularly its specificity (S/N > 10) and reliability (100 % LAG3 identification with high significant mascot score >87.9). The adjusted format for rapid, collective, and automated on-chip MALDI-MS analysis is robust at the femtomole level and has numerous potential applications in proteomics.

Keywords

Surface plasmon resonance Mass spectrometry Immuno sensor Biomarker Proteomics 

Notes

Acknowledgment

The authors thank other members of our laboratory for help and fruitful discussions. The authors would like to thank Dr Frédéric Triebel (from Immutep SA) for providing the A9H12/LAG3 model and the technological “Mimento platform” (Besançon, France). We are grateful to Bruker Daltonics, especially Y. Hebert for his technological support. This study was supported by grants from Horiba Scientific, the Ministry of Health and Research, the Conseil Regional de Bourgogne, and the Franche-Comté University. The authors thank Mr Philip Bastable, translator at Dijon Hospital, for proofreading.

Supplementary material

216_2012_6130_MOESM1_ESM.pdf (309 kb)
ESM. 1(DOC 309 kb)

References

  1. 1.
    El Mouedden M, Vandermeeren M, Meert T, Mercken M (2005) J Neurosci Meth 145:97–105CrossRefGoogle Scholar
  2. 2.
    Jain N, Kesimer M, Hoyer JD, Calikoglu AS (2011) J Diabetes Complications 25:14–8CrossRefGoogle Scholar
  3. 3.
    Sparbier K, Wenzel T, Dihazi H, Blaschke S, Müller G-A, Deelder A, Flad T, Kostrzewa M (2009) Proteomics 9:1442–1450CrossRefGoogle Scholar
  4. 4.
    Trenchevska O, Kamcheva E, Nedelkov D (2010) J Proteome Res 9:5969–5973CrossRefGoogle Scholar
  5. 5.
    Lopez M-F, Rezai T, Sarracino DA, Prakash A, Krastins B, Athanas M, Singh R-J, Barnidge D-R, Oran P, Borges C, Nelson R-W (2010) Clin Chem 56:281–290CrossRefGoogle Scholar
  6. 6.
    Anderson N-L, Anderson N-G, Haines L-R, Hardie D-B, Olafson R-W, Pearson T-W (2004) J Proteome Res 3:235–244CrossRefGoogle Scholar
  7. 7.
    Gavin I-M, Kukhtin A, Glesne D, Schabacker D, Chandler D-P (2005) Biotechniques 39:99–107CrossRefGoogle Scholar
  8. 8.
    Jiang J, Parker C-E, Fuller J-R, Kawula T-H, Borchers C-H (2007) Anal Chim Acta 605:70–79CrossRefGoogle Scholar
  9. 9.
    Darii E, Lebeau D, Papin N, Rubina A-Y, Stomakhin A, Tost J, Sauer S, Savvateeva E, Dementieva E, Zasedatelev A, Makarov A-A, Gut I-G (2009) New Biotechnol 25:404–416CrossRefGoogle Scholar
  10. 10.
    Razavi M, Pope M-E, Soste M-V, Eyford B-A, Jackson A-M, Anderson N-L, Pearson TW (2011) J Immunol Methods 364:50–64CrossRefGoogle Scholar
  11. 11.
    Yan H, Ahmad-Tajudin A, Bengtsson M, Xiao S-J, Laurell T, Ekstrom S (2011) Anal Chem 83:4942–48CrossRefGoogle Scholar
  12. 12.
    Natsume T, Nakayama H, Jansson S, Isobe T, Takio K, Mikoshiba K (2000) Anal Chem 72:4193–4198CrossRefGoogle Scholar
  13. 13.
    Catimel B, Rothacker J, Catime J, Faux M, Ross J, Connolly L, Clippingdale A, Burges A-W, Nice E (2005) J Proteome Res 4:1646–1656CrossRefGoogle Scholar
  14. 14.
    Larsericsdotter H, Jansson O, Zhukov A, Areskou D, Oscarsson S, Buijs J (2006) Proteomics 6:2355–2364CrossRefGoogle Scholar
  15. 15.
    Stigter E-C-A, de Jong G-J, van Bennekom W-P (2009) Biosens Bioelectron 24:2184–2190CrossRefGoogle Scholar
  16. 16.
    Nedelkov D, Nelson R-W (2000) J Mol Recognit 13:140–145CrossRefGoogle Scholar
  17. 17.
    Nedelkov D, Tubbs K-A, Nelson R-W (2006) Electrophoresis 27:3671–3675CrossRefGoogle Scholar
  18. 18.
    Nedelkov D (2007) Anal Chem 79:5987–5990CrossRefGoogle Scholar
  19. 19.
    Treitz G, Gronewold T-M-A, Quandt E, Zabe-Kühn M (2008) Biosens Bioelectron 23:1496–1502CrossRefGoogle Scholar
  20. 20.
    Situ C, Buijs J, Mooney MH, Elliott C-T (2010) Trends Anal Chem 29:1305–131CrossRefGoogle Scholar
  21. 21.
    Grote J, Dankbar N, Gedig E, Koenig S (2005) Anal Chem 77:1157–1162CrossRefGoogle Scholar
  22. 22.
    Kim Y-E, Yi S-Y, Lee C-S, Jung Y, Chung B-H (2011) Analyst. doi:10.1039/c1an15659d
  23. 23.
    Boireau W, Rouleau A, Lucchi G, Ducoroy P (2009) Biosens Bioelectron 24:1121–1127CrossRefGoogle Scholar
  24. 24.
    Bellon S, Buchmann W, Gonnet F, Jarroux N, Anger-Leroy M, Guillonneau F, Daniel R (2009) Anal Chem 81:7695–702CrossRefGoogle Scholar
  25. 25.
    Springer T, Piliarik M, Homola J (2010) Anal Bioanal Chem 398:1955–1961CrossRefGoogle Scholar
  26. 26.
    Vaisocherova H, Yang W, Zhang Z, Cao ZQ, Cheng G, Piliarik M, Homola J, Jiang S-Y (2008) Anal Chem 80:7894–7901CrossRefGoogle Scholar
  27. 27.
    Anderson N-L, Razavi M, Pearson T-W, Kruppa G, Paape R, Suckau D (2011) J Proteome Res. doi:10.1021/pr201092v
  28. 28.
    Moussaoui W, Jaulhac B, Hoffmann A-M, Ludes B, Kostrzewa M, Riegel P, Prévost G (2010) Clin Microbiol Infect 16:1631–1638CrossRefGoogle Scholar
  29. 29.
    Triebel F, Hacene K, Pichon MF (2006) Cancer Lett 235:147–153CrossRefGoogle Scholar
  30. 30.
    Kardous F, Rouleau A, Simon B, Yahiaoui R, Manceau J-F, Boireau W (2010) Biosens Bioelectron 26:1666–1671CrossRefGoogle Scholar
  31. 31.
    Kardous F, El Fissi L, Friedt J-M, Boireau W, Yahiaoui R, Manceau J-F, Ballandras S (2011) J Appl Phys 109(9). doi:10.1063/1.3576113
  32. 32.
    Stenberg E, Persson B, Roos H, Urbaniczky C (1991) J Colloids Interface Sci 143:513–526CrossRefGoogle Scholar
  33. 33.
    Cazares L-H, Troyer D-A, Wang B, Drake R-R, Semmes O-J (2011) Anal Bioanal Chem 401:17–27CrossRefGoogle Scholar
  34. 34.
    Suckau D, Kohl J, Karwath G, Schneider K, Casaretto M, Bitter-Suermann D, Przybylski M (1990) PNAS 87:9848–9852CrossRefGoogle Scholar
  35. 35.
    Clemis EJ, Smith DS, Camenzind AG, Danell RM, Parker CE, Borchers CH (2012) Anal Chem 84(8):3514–22CrossRefGoogle Scholar
  36. 36.
    Anderson NL, Razavi M, Pearson TW, Kruppa G, Paape R, Suckau D (2012) J Proteome Res 11(3):1868–78CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • F. Remy-Martin
    • 1
    • 3
  • M. El Osta
    • 2
  • G. Lucchi
    • 2
  • R. Zeggari
    • 1
  • T. Leblois
    • 1
  • S. Bellon
    • 3
  • P. Ducoroy
    • 2
  • W. Boireau
    • 1
    • 4
  1. 1.Institut FEMTO-ST, Université de Franche Comté, CLIPPBesançonFrance
  2. 2.SFR Santé STIC, CLIPP (Clinical-Innovation Proteomic platform)Université de Bourgogne, Centre Hospitalier Universitaire de DijonDijonFrance
  3. 3.Horiba ScientificChilly MazarinFrance
  4. 4.Department of Micro-Nano Sciences & SystemsFEMTO-ST Institute, University of Franche-Comté, CLIPP (Clinical-Innovation Proteomic Platform)Besançon CedexFrance

Personalised recommendations