Analytical and Bioanalytical Chemistry

, Volume 404, Issue 1, pp 113–124 | Cite as

MALDI-mass spectrometry imaging of desalted rat brain sections reveals ischemia-mediated changes of lipids

  • Hay-Yan J. Wang
  • Hsuan-Wen Wu
  • Ping-Ju Tsai
  • Cheng Bin Liu
Original Paper


Ischemia-mediated lipidomic changes in rat brains were explored by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) profiling and imaging after in situ desalting which drastically simplified the spectral presentation of tissue lipids. Removal of interference from the massively changed cations in response to tissue damage permitted the revelation of subtle yet important lipidomic changes. The identities of the detected lipids were confirmed by MALDI tandem mass spectrometry (MALDI-MS/MS). The MALDI-MS imaging (MALDI-MSI) result of lysophosphatidylcholine 16:0 (LPC 16:0) in the desalted brain section appeared essentially identical to that of sodiated LPC 16:0 in the adjacent undesalted section and verified the suitability of the desalting method for the MALDI-MSI studies of lipids in tissue. Other than the consistently decreased phosphatidylcholine (PC) 16:0/18:1, images of PCs containing all saturated, or combined saturated and monounsaturated fatty acyl (MUFA) residues revealed their parenchymal increase by ischemia. Images of PCs containing polyunsaturated fatty acyl (PUFA) residues in normal cortex showed laminated patterns similar to cortical lamina. Ischemia reduced the abundance of PC 16:0/20:4 and PC 16:0/22:6 and disrupted the laminated distribution of the former. However, ischemia increased the subcortical abundance of PUFA-PCs containing stearoyl residue and confined their cortical increase within limited areas. Image of parenchymal sphingomyelin 18:0 (SM 18:0) showed its consistent decrease by ischemia that paralleled the increase of ceramide 18:0-H2O in region of moderate to high SM abundance. The above results presented the lipidomic changes largely different from previous MALDI-MSI results and suggested a window of intervention that may benefit the management of cerebrovascular accident and other brain injuries.


MALDI-mass spectrometry imaging In situ desalting Cerebral ischemia Lipidomics 



This study was partially sponsored by National Scientific Council, Taiwan (grant no: NSC-99-2320-B-110-001-MY3), by Veterans General Hospital-Kaohsiung-National Sun Yat-Sen University joint research consortium (grant no: VGHNSU100-006) and by “Aim for the Top University Plan” of National Sun Yat-Sen University, Taiwan. The authors thank Dr. Jentaie Shea of Department of Chemistry, National Sun Yat-Sen University, Taiwan, for his generous support in the use of MALDI TOF-TOF instrument.

Supplementary material

216_2012_6077_MOESM1_ESM.pdf (170 kb)
ESM 1 (PDF 81 kb)


  1. 1.
    Adibhatla RM, Hatcher JF (2007) Secretory phospholipase A2 IIA is up-regulated by TNF-alpha and IL-1alpha/beta after transient focal cerebral ischemia in rat. Brain Res 1134(1):199–205CrossRefGoogle Scholar
  2. 2.
    Adibhatla RM, Hatcher JF, Larsen EC, Chen X, Sun D, Tsao FH (2006) CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP: phosphocholine cytidylyltransferase after stroke. J Biol Chem 281(10):6718–6725CrossRefGoogle Scholar
  3. 3.
    Sun GY, Foudin LL (1984) On the status of lysolecithin in rat cerebral cortex during ischemia. J Neurochem 43(4):1081–1086CrossRefGoogle Scholar
  4. 4.
    Adibhatla RM, Hatcher JF, Dempsey RJ (2003) Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal 5(5):647–654CrossRefGoogle Scholar
  5. 5.
    Phillis JW, O’Regan MH (2003) The role of phospholipases, cyclooxygenases, and lipoxygenases in cerebral ischemic/traumatic injuries. Crit Rev Neurobiol 15(1):61–90CrossRefGoogle Scholar
  6. 6.
    Phillis JW, O’Regan MH (2004) A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res Brain Res Rev 44(1):13–47CrossRefGoogle Scholar
  7. 7.
    Fuchs B, Schiller J (2009) Lysophospholipids: their generation, physiological role and detection. Are they important disease markers? Mini Rev Med Chem 9(3):368–378Google Scholar
  8. 8.
    Rao AM, Hatcher JF, Dempsey RJ (2000) Lipid alterations in transient forebrain ischemia: possible new mechanisms of CDP-choline neuroprotection. J Neurochem 75(6):2528–2535CrossRefGoogle Scholar
  9. 9.
    Gotoh O, Asano T, Koide T, Takakura K (1985) Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I: the time courses of the brain water, sodium and potassium contents and blood–brain barrier permeability to 125I-albumin. Stroke 16(1):101–109CrossRefGoogle Scholar
  10. 10.
    Slivka A, Murphy E, Horrocks L (1995) Cerebral edema after temporary and permanent middle cerebral artery occlusion in the rat. Stroke 26(6):1061–1065, discussion 1065–1066CrossRefGoogle Scholar
  11. 11.
    Koizumi S, Yamamoto S, Hayasaka T, Konishi Y, Yamaguchi-Okada M, Goto-Inoue N, Sugiura Y, Setou M, Namba H (2010) Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain. Neuroscience 168(1):219–225CrossRefGoogle Scholar
  12. 12.
    Wang HY, Liu CB, Wu HW, Kuo JS (2010) Direct profiling of phospholipids and lysophospholipids in rat brain sections after ischemic stroke. Rapid Comm Mass Spectrom 24(14):2057–2064CrossRefGoogle Scholar
  13. 13.
    Hankin JA, Farias SE, Barkley RM, Heidenreich K, Frey LC, Hamazaki K, Kim HY, Murphy RC (2011) MALDI mass spectrometric imaging of lipids in rat brain injury models. J Am Soc Mass Spectrom 22(6):1014–1021CrossRefGoogle Scholar
  14. 14.
    Jackson SN, Wang HY, Woods AS (2005) In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 16(12):2052–2056CrossRefGoogle Scholar
  15. 15.
    Han X, Gross RW (2001) Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 295(1):88–100CrossRefGoogle Scholar
  16. 16.
    Hsu FF, Turk J (2001) Structural determination of glycosphingolipids as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisional-activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom 12(1):61–79CrossRefGoogle Scholar
  17. 17.
    Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, Setou M (2009) Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res 50(9):1776–1788CrossRefGoogle Scholar
  18. 18.
    Wang HY, Liu CB, Wu HW (2011) A simple desalting method for direct MALDI mass spectrometry profiling of tissue lipids. J Lipid Res 52(4):840–849CrossRefGoogle Scholar
  19. 19.
    Zhang JP, Sun GY (1995) Regulation of FFA by the acyltransferase pathway in focal cerebral ischemia-reperfusion. Neurochem Res 20(11):1279–1286CrossRefGoogle Scholar
  20. 20.
    Lochner A, de Villiers M (1989) Phosphatidylcholine biosynthesis in myocardial ischaemia. J Mol Cell Cardiol 21(2):151–163CrossRefGoogle Scholar
  21. 21.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91CrossRefGoogle Scholar
  22. 22.
    Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH (2009) Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41(2):368–374CrossRefGoogle Scholar
  23. 23.
    Candelario-Jalil E, Mhadu NH, González-Falcón A, García-Cabrera M, Muñoz E, León OS, Fiebich BL (2005) Effects of the cyclooxygenase-2 inhibitor nimesulide on cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion in the rat. J Neuroinflamm 2(1):3–13CrossRefGoogle Scholar
  24. 24.
    Hankin JA, Barkley RM, Murphy RC (2007) Sublimation as a method of matrix application for mass spectrometric imaging. J Am Soc Mass Spectrom 18(9):1646–1652CrossRefGoogle Scholar
  25. 25.
    Murphy RC, Hankin JA, Barkley RM, Zemski Berry KA (2011) MALDI imaging of lipids after matrix sublimation/deposition. Biochim Biophys Acta 1811(11):970–975Google Scholar
  26. 26.
    Spratt NJ, Fernandez J, Chen M, Rewell S, Cox S, van Raay L, Hogan L, Howells DW (2006) Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. J Neurosci Meth 155(2):285–290CrossRefGoogle Scholar
  27. 27.
    Candelario-Jalil E, González-Falcón A, García-Cabrera M, León OS, Fiebich BL (2007) Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood–brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 100(4):1108–1120CrossRefGoogle Scholar
  28. 28.
    Wang HY, Jackson SN, McEuen J, Woods AS (2005) Localization and analyses of small drug molecules in rat brain tissue sections. Anal Chem 77(20):6682–6686CrossRefGoogle Scholar
  29. 29.
    Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Compact 3rd. edn. Academic Press, Inc, San DiegoGoogle Scholar
  30. 30.
    Wang H-YJ, Jackson SN, Post J, Woods AS (2008) A minimalist approach to MALDI imaging of glycerophospholipids and sphingolipids in rat brain tissues. Int J Mass Spectrom 278(2–3):143–149Google Scholar
  31. 31.
    Strohalm M, Hassman M, Kosata B, Kodicek M (2008) mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Comm Mass Spectrom 22(6):905–908CrossRefGoogle Scholar
  32. 32.
    Strohalm M, Kavan D, Novak P, Volny M, Havlicek V (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82(11):4648–4651CrossRefGoogle Scholar
  33. 33.
    Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, Spener F, van Meer G, Wakelam MJ, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–S14CrossRefGoogle Scholar
  34. 34.
    Yabuuchi H, O’Brien JS (1968) Positional distribution of fatty acids in glycerophosphatides of bovine gray matter. J Lipid Res 9(1):65–67Google Scholar
  35. 35.
    Murphy RC, Hankin JA, Barkley RM (2009) Imaging of lipid species by MALDI mass spectrometry. J Lipid Res 50(Suppl):S317–S322CrossRefGoogle Scholar
  36. 36.
    Miller R, Maitra R (2002) Laminar continuity between neo- and meso-cortex: the hypothesis of the added laminae in the neocortex. In: Shuz A, Miller R (eds) Cortical areas: unity and diversity. Taylor & Francis, London, New York, pp 219–242CrossRefGoogle Scholar
  37. 37.
    McDonnell LA, Heeren RM (2007) Imaging mass spectrometry. Mass Spectrom Rev 26(4):606–643CrossRefGoogle Scholar
  38. 38.
    Sparvero LJ, Amoscato AA, Kochanek PM, Pitt BR, Kagan VE, Bayir H (2010) Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in traumatic brain injury. J Neurochem 115(6):1322–1336CrossRefGoogle Scholar
  39. 39.
    Puolitaival SM, Burnum KE, Cornett DS, Caprioli RM (2008) Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J Am Soc Mass Spectrom 19(6):882–886CrossRefGoogle Scholar
  40. 40.
    Arrigoni E, Averet N, Cohadon F (1987) Effects of CDP-choline on phospholipase A2 and cholinephosphotransferase activities following a cryogenic brain injury in the rabbit. Biochem Pharmacol 36(21):3697–3700CrossRefGoogle Scholar
  41. 41.
    Masuzawa Y, Sugiura T, Sprecher H, Waku K (1989) Selective acyl transfer in the reacylation of brain glycerophospholipids. Comparison of three acylation systems for 1-alk-1′-enylglycero-3-phosphoethanolamine, 1-acylglycero-3-phosphoethanolamine and 1-acylglycero-3-phosphocholine in rat brain microsomes. Biochim Biophys Acta 1005(1):1–12Google Scholar
  42. 42.
    Pediconi MF, de Turco EB Rodriguez, Bazan NG (1983) Effects of postdecapitation ischemia on the metabolism of [14C]arachidonic acid and [14C]palmitic acid in the mouse brain. Neurochem Res 8(7):835–845CrossRefGoogle Scholar
  43. 43.
    Farooqui AA, Horrocks LA, Farooqui T (2000) Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci 14(3):123–135CrossRefGoogle Scholar
  44. 44.
    Burdge GC, Creaney A, Postle AD, Wilton DC (1995) Mammalian secreted and cytosolic phospholipase A2 show different specificities for phospholipid molecular species. Int J Biochem Cell Biol 27(10):1027–1032CrossRefGoogle Scholar
  45. 45.
    Diez E, Chilton FH, Stroup G, Mayer RJ, Winkler JD, Fonteh AN (1994) Fatty acid and phospholipid selectivity of different phospholipase A2 enzymes studied by using a mammalian membrane as substrate. Biochem J 301(Pt 3):721–726Google Scholar
  46. 46.
    Sundler R, Winstedt D, Wijkander J (1994) Acyl-chain selectivity of the 85 kDa phospholipase A2 and of the release process in intact macrophages. Biochem J 301(Pt 2):455–458Google Scholar
  47. 47.
    Hirashima Y, Koshu K, Nishijima M, Oka N, Endo S, Takaku A (1983) Activities of phospholipase A1, A2, lysophospholipase and acylCoA: lysophospholipid acyltransferase in ischemic brain of the dog. No to Shinkei 35(9):899–904Google Scholar
  48. 48.
    Kubota M, Narita K, Nakagomi T, Tamura A, Shimasaki H, Ueta N, Yoshida S (1996) Sphingomyelin changes in rat cerebral cortex during focal ischemia. Neurol Res 18(4):337–341Google Scholar
  49. 49.
    Soeda S, Tsuji Y, Ochiai T, Mishima K, Iwasaki K, Fujiwara M, Yokomatsu T, Murano T, Shibuya S, Shimeno H (2004) Inhibition of sphingomyelinase activity helps to prevent neuron death caused by ischemic stress. Neurochem Int 45(5):619–626CrossRefGoogle Scholar
  50. 50.
    Menger RF, Stutts WL, Anbukumar DS, Bowden JA, Ford DA, Yost RA (2012) MALDI mass spectrometric imaging of cardiac tissue following myocardial infarction in a rat coronary artery ligation model. Anal Chem 84(2):1117–1125CrossRefGoogle Scholar
  51. 51.
    McIver SR, Muccigrosso M, Gonzales ER, Lee JM, Roberts MS, Sands MS, Goldberg MP (2010) Oligodendrocyte degeneration and recovery after focal cerebral ischemia. Neuroscience 169(3):1364–1375CrossRefGoogle Scholar
  52. 52.
    Chavko M, Nemoto EM (1992) Regional differences in rat brain lipids during global ischemia. Stroke 23(7):1000–1004CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hay-Yan J. Wang
    • 1
  • Hsuan-Wen Wu
    • 1
  • Ping-Ju Tsai
    • 1
    • 2
  • Cheng Bin Liu
    • 1
    • 3
  1. 1.Department of Biological SciencesNational Sun Yat-Sen UniversityKaohsiungTaiwan
  2. 2.Department of SurgeryYuan’s General HospitalKaohsiungTaiwan
  3. 3.Department of Obstetrics and GynecologyVeterans General Hospital-KaohsiungKaohsiungTaiwan

Personalised recommendations