Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 2–3, pp 691–701 | Cite as

Analysis of egg-based model wall paintings by use of an innovative combined dot-ELISA and UPLC-based approach

  • Mariangela Potenza
  • Giuseppina Sabatino
  • Francesca Giambi
  • Luca Rosi
  • Anna Maria Papini
  • Luigi Dei
Original Paper

Abstract

The chemical analysis of egg-based wall paintings—the mezzo fresco technique—is an interesting topic in the characterisation of organic binders. A revised procedure for a dot-enzyme-linked immunosorbent assay (dot-ELISA) able to detect protein components of egg-based wall paintings is reported. In the new dot-ELISA procedure we succeeded in maximizing the staining colour by adjusting the temperature during the staining reaction. Quantification of the colour intensity by visible reflectance spectroscopy resulted in a straight line plot of protein concentration against reflectance in the wavelength range 380–780 nm. The modified dot-ELISA procedure is proposed as a semi-quantitative analytical method for characterisation of protein binders in egg-based paintings. To evaluate its performance, the method was first applied to standard samples (ovalbumin, whole egg, egg white), then to model specimens, and finally to real samples (Giotto’s wall paintings). Moreover, amino acid analysis performed by innovative ultra-performance liquid chromatography was applied both to standards and to model samples and the results were compared with those from the dot-ELISA tests. In particular, after protein hydrolysis (24 h, 114 °C, 6 mol L−1 HCl) of the samples, amino acid derivatization by use of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate enabled reproducible analysis of amino acids. This UPLC amino acid analysis was rapid and reproducible and was applied for the first time to egg-based paintings. Because the painting technique involved the use of egg-based tempera on fresh lime-based mortar, the study enabled investigation of the effect of the alkaline environment on egg-protein detection by both methods.

Figure

Model wall paintings specimens and typical dot-ELISA stains for egg proteins.

Keywords

UPLC-based amino acid analysis dot-ELISA Egg-based wall paintings Cultural heritage conservation 

Notes

Acknowledgments

The authors express their gratitude to Professor Guido Botticelli, for careful preparation of the model samples and continuous exchange of opinions during the entire study, and to Dr Mirella Baldan, R. & C. Scientifica s.r.l., for fruitful discussions on the dot-ELISA tests. Thanks are due also to the Opificio delle Pietre Dure team for cooperation during study of the Giotto sample. Financial support from Università degli Studi di Firenze (Fondi d’Ateneo ex-60 %), Ente Cassa di Risparmio di Firenze, and from Regione Toscana PAR-FAS, SICAMOR PROJECT are gratefully acknowledged. MP thanks Regione Toscana, Italy, TemArt Project European Fund for Regional Development (POR CreO FESR 2007–2013) and the Project Partner Adarte snc, for financial support.

Supplementary material

216_2012_6049_MOESM1_ESM.pdf (314 kb)
ESM 1 (PDF 314 kb)

References

  1. 1.
    Carbo MTD, Reig FB, Adelantado JVG, Martinez VP (1996) Anal Chim Acta 330:207–215CrossRefGoogle Scholar
  2. 2.
    Meilunas RJ, Bentsen JG, Steinberg A (1990) Stud Conserv 35:33–51CrossRefGoogle Scholar
  3. 3.
    Jurado-López A, Luque de Castro MD (2004) Anal Bioanal Chem 380:706–711CrossRefGoogle Scholar
  4. 4.
    Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G (2000) Anal Chim Acta 407:261–274CrossRefGoogle Scholar
  5. 5.
    Nevin A, Osticioli I, Anglos D, Burnstock A, Cather S, Castellucci E (2007) Anal Chem 79:6143–6151CrossRefGoogle Scholar
  6. 6.
    Nevin A, Osticioli I, Anglos D, Burnstock A, Cather S, Castellucci E (2008) J Raman Spectrosc 39:993–1000CrossRefGoogle Scholar
  7. 7.
    Colombini MP, Modugno F (2004) J Sep Sci 27:147–160CrossRefGoogle Scholar
  8. 8.
    Schilling MR, Khanjian HP, Souza LAC (1996) J Am Inst Conserv 35:45–59CrossRefGoogle Scholar
  9. 9.
    Schilling MR, Khanjian HP (1996) J Am Inst Conserv 35:123–144CrossRefGoogle Scholar
  10. 10.
    Casoli A, Musini PC, Palla G (1996) J Chromatogr A 731:237–246CrossRefGoogle Scholar
  11. 11.
    Colombini MP, Modugno F, Giacomelli M, Francesconi S (1999) J Chromatogr A 846:113–124CrossRefGoogle Scholar
  12. 12.
    Colombini MP, Carmignani A, Modugno F, Frezzato F, Olchini A, Brecoulaki H, Vassilopoulou V, Karkanas P (2004) Talanta 63:839–848CrossRefGoogle Scholar
  13. 13.
    Andreotti A, Bonaduce I, Colombini MP, Gautier G, Modugno F, Ribechini E (2006) Anal Chem 78:4490–4500CrossRefGoogle Scholar
  14. 14.
    Prikryl P, Havlíková L, Pacáková V, Hradilová J, Tulík K, Hofta P (2006) J Sep Sci 29:2653–266CrossRefGoogle Scholar
  15. 15.
    Gautier G, Colombini MP (2007) Talanta 73:95–102CrossRefGoogle Scholar
  16. 16.
    Wouters J, Van Bos M, Lamens K (2000) Stud Conserv 45:106–116CrossRefGoogle Scholar
  17. 17.
    Peris-Vicente J, Gimeno Adelantado JV, Doménech Carbó MT, Mateo Castro R, Bosch Reig F (2006) Talanta 68:648–1654Google Scholar
  18. 18.
    Halpine SM (1992) Stud Conserv 37:22–38CrossRefGoogle Scholar
  19. 19.
    Ronca F (1994) Stud Conserv 39:107–120CrossRefGoogle Scholar
  20. 20.
    Checa-Moreno R, Manzano E, Mirón G, Capitan-Vallevey LF (2008) Talanta 75:697–704CrossRefGoogle Scholar
  21. 21.
    Carbini M, Stevanato R, Rovea M, Traldi P, Favretto D (1996) Rapid Commun Mass Spectrom 10:1240–1242CrossRefGoogle Scholar
  22. 22.
    Chiavari G, Gandini N, Russo P, Fabbri D (2001) Chromatographia 53:311–314CrossRefGoogle Scholar
  23. 23.
    Nováková L, Matysová L, Solich P (2006) Talanta 68:908–918CrossRefGoogle Scholar
  24. 24.
    Boogers I, Plugge W, Stokkermans YQ, Duchateau ALL (2008) J Chromatogr A 1189:406–409CrossRefGoogle Scholar
  25. 25.
    Fiechter G, Mayer HK (2011) J Chromatogr B 879:1353–1360CrossRefGoogle Scholar
  26. 26.
    Pappa-Louisi A, Nikitas P, Agrafiotou P, Papageorgiou A (2007) Anal Chim Acta 593:92–97CrossRefGoogle Scholar
  27. 27.
    Ramirez-Barat B, de la Vinia S (2001) Stud Conserv 46:282–288CrossRefGoogle Scholar
  28. 28.
    Kockaert L, Gausset P, Dubi-Rucquoy M (1989) Stud Conserv 34:183–188CrossRefGoogle Scholar
  29. 29.
    Heginbotham A, Millay V, Quick M (2006) JAIC 45:89–105Google Scholar
  30. 30.
    Cartechini L, Vagnini M, Palmieri M, Pitzurra L, Mello T, Mazurek J, Chiari G (2010) Acc Chem Res 43(6):867–876CrossRefGoogle Scholar
  31. 31.
    Dolci LS, Sciutto G, Guardigli M, Rizzoli M, Prati S, Mazzeo R, Roda A (2008) Anal Bioanal Chem 392:29–35CrossRefGoogle Scholar
  32. 32.
    Arslanoglu J, Schultz J, Loike J, Peterson K (2010) J Biosci 35(1):3–10CrossRefGoogle Scholar
  33. 33.
    Palmieri M, Vagnini M, Pitzurra L, Rocchi P, Brunetti BG, Sgamellotti A, Cartechini L (2010) Anal Bioanal Chem 399:3011–3023CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mariangela Potenza
    • 1
  • Giuseppina Sabatino
    • 2
    • 3
  • Francesca Giambi
    • 4
    • 6
  • Luca Rosi
    • 5
  • Anna Maria Papini
    • 3
    • 5
  • Luigi Dei
    • 5
  1. 1.Dipartimento di Chimica “Ugo Schiff”Università degli Studi di FirenzeFirenzeItaly
  2. 2.Espikem srlPratoItaly
  3. 3.Laboratorio Interdipartimentale di Chimica e Biologia di Peptidi e Proteine, Polo Scientifico e TecnologicoUniversità degli Studi di FirenzeFirenzeItaly
  4. 4.Consorzio Interuniversitario CSGI, c/o Dipartimento di Chimica “Ugo Schiff”, Polo Scientifico e TecnologicoUniversità degli Studi di FirenzeFirenzeItaly
  5. 5.Dipartimento di Chimica “Ugo Schiff”, Polo Scientifico e TecnologicoUniversità degli Studi di FirenzeFirenzeItaly
  6. 6.CNR-ICVBCFirenzeItaly

Personalised recommendations