Analytical and Bioanalytical Chemistry

, Volume 403, Issue 8, pp 2077–2088 | Cite as

Applications of microelectromagnetic traps



Microelectromagnetic traps (METs) have been used for almost two decades to manipulate magnetic fields. Different trap geometries have been shown to produce distinct magnetic fields and field gradients. Initially, microelectromagnetic traps were used mainly to separate and concentrate magnetic material at small scales. Recently such traps have been implemented for unique applications, for example filterless bioseparations, inductive heat generation, and biological detection. In this review, we describe recent reports in which MET geometry, current density, or external fields have been used. Descriptions of recent applications in which METs have been used to develop sensors, manipulate DNA, or block ion current are also provided.


Illustration of a magnetic particle trapped by the magnetic field of a microelectromagnet


Microelectromagnetic traps Magnetic particles Magnetic manipulation Microfluidics 







Microelectromagnetic trap(s)


Magnetic particle(s)




Surface-enhanced resonance Raman scattering


Single photon avalanche diode




  1. 1.
    Gijs MAM (2004) Microfluid Nanofluid 1:22–40Google Scholar
  2. 2.
    Gijs MAM, Lacharme F, Lehmann U (2009) Chem Rev 110:1518–1563CrossRefGoogle Scholar
  3. 3.
    Hsing I-M, Xu Y, Zhao W (2007) Electroanalysis 19:755–768CrossRefGoogle Scholar
  4. 4.
    Pamme N (2005) Lab Chip 6:24–38CrossRefGoogle Scholar
  5. 5.
    Friedman G, Yellen B (2005) Curr Opin Colloid Interface Sci 10:158–166CrossRefGoogle Scholar
  6. 6.
    Choi J-W, Oh KW, Han A, Wijayawardhana CA, Lannes C, Bhansali S, Schlueter KT, Heineman WR, Halsall HB, Nevin JH, Helmicki AJ, Henderson HT, Ahn CH (2001) Biomed Microdevices 3:191–200CrossRefGoogle Scholar
  7. 7.
    Jaffrezic-Renault N, Martelet C, Chevolot Y, Cloarec J-P (2007) Sensors 7:589–614CrossRefGoogle Scholar
  8. 8.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D:Appl Phys 36:R167–R181Google Scholar
  9. 9.
    Zhang C, Khoshmanesh K, Mitchell A, Kalantar-zadeh K (2010) Anal Bioanal Chem 396:401–420CrossRefGoogle Scholar
  10. 10.
    Castillo J, Dimaki M, Svendsen WE (2009) Integr Biol 1:30–42CrossRefGoogle Scholar
  11. 11.
    Desai JP, Pillarisetti A, Brooks AD (2007) Annu Rev Biomed Eng 9:35–53CrossRefGoogle Scholar
  12. 12.
    Dienerowitz M, Mazilu M, Dholakia K (2008) J Nanophotonics 2:021875CrossRefGoogle Scholar
  13. 13.
    Yang AHJ, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D (2009) Nature 457:71–75CrossRefGoogle Scholar
  14. 14.
    Astumian RD (1997) Science 276:917–922CrossRefGoogle Scholar
  15. 15.
    Decossas S, Mazen F, Baron T, Brémond G, Souifi A (2003) Nanotechnology 14:1272–1278CrossRefGoogle Scholar
  16. 16.
    Voldman J (2006) Annu Rev Biomed Eng 8:425–454CrossRefGoogle Scholar
  17. 17.
    Halliday D, Resnick R (1974) Fundamentals of Physics Revised Printing. John Wiley and Sons, New York, p 569Google Scholar
  18. 18.
    Ramadan Q, Samper V, Poenar D, Yu C (2004) J Magn Magn Mater 281:150–172CrossRefGoogle Scholar
  19. 19.
    Gassner A-L, Abonnenc M, Chen H-X, Morandini J, Josserand J, Rossier JS, Busnel J-M, Girault HH (2009) Lab Chip 9:2356–2363Google Scholar
  20. 20.
    Lee CS, Lee H, Westervelt RM (2001) Appl Phys Lett 79:3308–3310CrossRefGoogle Scholar
  21. 21.
    Ramadan Q, Poenar D, Yu C (2008) Microfluid Nanofluid 6:53–62CrossRefGoogle Scholar
  22. 22.
    Ramadan Q, Samper V, Poenar D, Yu C (2005) Int J Nano Sci 4:489–499CrossRefGoogle Scholar
  23. 23.
    Ramadan Q, Samper V, Poenar D, Yu C (2006) J Microelectromech Syst 15:624–638CrossRefGoogle Scholar
  24. 24.
    Ramadan Q, Samper V, Poenar D, Yu C (2006) Biosens Bioelectron 21:1693–1702CrossRefGoogle Scholar
  25. 25.
    Ramadan Q, Samper V, Poenar D, Yu C (2006) Biomed Microdevices 8:151–158CrossRefGoogle Scholar
  26. 26.
    Ramadan Q, Yu C, Samper V, Poenar D (2006) Appl Phys Lett 88:032501CrossRefGoogle Scholar
  27. 27.
    Ramadan Q, Samper V, Poenar D, Liang Z, Yu C, Lim T (2006) Sens Actuators B 113:944–955CrossRefGoogle Scholar
  28. 28.
    Lee H, Purdon AM, Westervelt RM (2004) IEEE Trans Magn 40:2991–2993CrossRefGoogle Scholar
  29. 29.
    Basore JR, Lavrik NV, Baker LA (2010) Langmuir 26:19239–19244CrossRefGoogle Scholar
  30. 30.
    Basore JR, Lavrik NV, Baker LA (2010) Adv Mater 22:2759–2763CrossRefGoogle Scholar
  31. 31.
    Smistrup K, Bruus H, Hansen MF (2007) J Magn Magn Mater 311:409–415CrossRefGoogle Scholar
  32. 32.
    Rida A, Fernandez V, Gijs MAM (2003) Appl Phys Lett 83:2396–2398CrossRefGoogle Scholar
  33. 33.
    Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Appl Phys Lett 78:1775–1777CrossRefGoogle Scholar
  34. 34.
    Beyzavi A, Nguyen N-T (2010) J Micromech Microeng 20:1–8Google Scholar
  35. 35.
    Beyzavi A, Nguyen N-T (2009) J Phys D: Appl Phys 42:015004CrossRefGoogle Scholar
  36. 36.
    Nguyen N-T, Ng KM, Huang X (2006) Appl Phys Lett 89:052509CrossRefGoogle Scholar
  37. 37.
    Liu C, Lagae L, Wirix-Speetjens R, Borghs G (2007) J Appl Phys 101:024913CrossRefGoogle Scholar
  38. 38.
    Johnson KS, Drndic M, Thywissen JH, Zabow G, Westervelt RM, Prentiss M (1998) Phys Rev Lett 81:1137–1141CrossRefGoogle Scholar
  39. 39.
    Drndic M, Johnson KS, Thywissen JH, Prentiss M, Westervelt RM (1998) Appl Phys Lett 72:2906–2908CrossRefGoogle Scholar
  40. 40.
    Drndic M, Lee CS, Westervelt RM (2001) Phys Rev B 63:085321CrossRefGoogle Scholar
  41. 41.
    Ahn CH, Allen MG, Trimmer W, Jun Y-N, Erramilli S (1996) IEEE J Microelectromech Syst 5:151–158CrossRefGoogle Scholar
  42. 42.
    Smistrup K, Hansen O, Bruus H, Hansen MF (2005) J Magn Magn Mater 293:597–604CrossRefGoogle Scholar
  43. 43.
    Smistrup K, Tang PT, Hansen O, Hansen MF (2006) J Magn Magn Mater 300:418–426CrossRefGoogle Scholar
  44. 44.
    Drogoff BL, Clime L, Veres T (2008) Microfluid Nanofluid 5:373–381CrossRefGoogle Scholar
  45. 45.
    Siegel AC, Shevkoplyas SS, Weibel DB, Bruzewicz DA, Martinez AW, Whitesides GM (2006) Angew Chem Int Ed 45:6877–6882CrossRefGoogle Scholar
  46. 46.
    Fulcrand R, Bancaud A, Escriba C, He Q, Charlot S, Boukabache A, Gué AM (2011) Sens. Actuators, B 160:1520–1528Google Scholar
  47. 47.
    Choi J-W, Ahn CH, Bhansali S, Henderson HT (2000) Sens Actuators B 68:34–39CrossRefGoogle Scholar
  48. 48.
    Choi J-W, Liakopoulos TM, Ahn CH (2001) Biosens Bioelectron 16:409–416CrossRefGoogle Scholar
  49. 49.
    Lien K-Y, Lee W-C, Lei H-Y, Lee G-B (2007) Biosens Bioelectron 22:1739–1748CrossRefGoogle Scholar
  50. 50.
    Liu C-J, Lien K-Y, Weng C-Y, Shin J-W, Chang T-Y, Lee G-B (2009) Biomed Microdevices 11:339–350CrossRefGoogle Scholar
  51. 51.
    Derec C, Wilhelm C, Servais J, Bacri J-C (2010) Microfluid Nanofluid 8:123–130CrossRefGoogle Scholar
  52. 52.
    Song S-H, Lee H-L, Min YH, Jung H-I (2009) Sens Actuators B 141:210–216CrossRefGoogle Scholar
  53. 53.
    Lee H, Liu Y, Ham D, Westervelt RM (2007) Lab Chip 7:331–337CrossRefGoogle Scholar
  54. 54.
    Lee H, Purdon AM, Chu V, Westervelt RM (2004) Nano Lett 4:995–998CrossRefGoogle Scholar
  55. 55.
    Smith MJ, Sheehan PE, Perry LL, O'Connor K, Csonka LN, Applegate BM, Whitman LJ (2006) Biophys J 91:1098–1107CrossRefGoogle Scholar
  56. 56.
    Florescu O, Mattmann M, Boser B (2008) J Appl Phys 103:046101CrossRefGoogle Scholar
  57. 57.
    Florescu O, Wang K, Au P, Tang J, Harris E, Beatty PR, Boser BE (2010) J Appl Phys 107:054702CrossRefGoogle Scholar
  58. 58.
    Schotter J, Shoshi A, Brueckl H (2009) J Magn Magn Mater 321:1671–1675CrossRefGoogle Scholar
  59. 59.
    Quinn EJ, Hernandez-Santana A, Hutson DM, Pegrum CM, Graham D, Smith WE (2007) Small 3:1394–1397CrossRefGoogle Scholar
  60. 60.
    Dubus S, Gravel J-F, Le Drogoff B, Nobert P, Veres T, Boudreau D (2006) Anal Chem 78:4457–4464CrossRefGoogle Scholar
  61. 61.
    Dupont EP, Labonne E, Vandevyver C, Lehmann U, Charbon E, Gijs MAM (2010) Anal Chem 82:49–52CrossRefGoogle Scholar
  62. 62.
    Smith SB, Cui Y, Bustamante C (1996) Science 271:795–799CrossRefGoogle Scholar
  63. 63.
    Odijk T (1995) Macromolecules 28:7016–7018CrossRefGoogle Scholar
  64. 64.
    Strick TR, Allemand J-F, Bensimon D, Bensimon A, Croquette V (1996) Science 271:1835–1837CrossRefGoogle Scholar
  65. 65.
    Haber C, Wirtz D (2000) Rev Sci Instrum 71:4561–4570CrossRefGoogle Scholar
  66. 66.
    Gosse C, Croquette V (2002) Biophys J 82:3314–3329CrossRefGoogle Scholar
  67. 67.
    Zlatanova J, Leuba SH (2003) Biochem Cell Biol 81:151–159CrossRefGoogle Scholar
  68. 68.
    Chiou C-H, Lee G-B (2005) J Micromech Microeng 15:109–117CrossRefGoogle Scholar
  69. 69.
    Chiou C-H, Huang Y-Y, Chiang M-H, Lee H-H, Lee G-B (2006) Nanotechnology 17:1217–1224CrossRefGoogle Scholar
  70. 70.
    Oh KW, Ahn CH (2006) J Micromech Microeng 16:R13–R39CrossRefGoogle Scholar
  71. 71.
    Fu C, Rummler Z, Schomburg W (2003) J Micromech Microeng 13:S96–S102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations