Analytical and Bioanalytical Chemistry

, Volume 403, Issue 7, pp 1897–1905 | Cite as

Simultaneous quantitation of sphingoid bases and their phosphates in biological samples by liquid chromatography/electrospray ionization tandem mass spectrometry

  • Daisuke Saigusa
  • Kanako Shiba
  • Asuka Inoue
  • Kotaro Hama
  • Michiyo Okutani
  • Nagisa Iida
  • Masayoshi Saito
  • Kaori Suzuki
  • Tohru Kaneko
  • Naoto Suzuki
  • Hiroaki Yamaguchi
  • Nariyasu Mano
  • Junichi Goto
  • Takanori Hishinuma
  • Junken Aoki
  • Yoshihisa TomiokaEmail author
Original Paper


We developed a liquid chromatography/electrospray ionization tandem mass spectrometry method for the simultaneous quantitative determination of C18 sphingosine (Sph), C18 dihydrosphingosine (dhSph), C18 phytosphingosine (pSph), C18 sphingosine-1-phosphate (S1P), C18 dihydrosphingosine-1-phosphate (dhS1P), and C18 phytosphingosine-1-phosphate (pS1P). Samples were prepared by simple methanol deproteinization and analyzed in selected reaction monitoring modes. No peak tailing was observed on the chromatograms using a Capcell Pak ACR column (1.5 mm i.d. × 250 mm, 3 μm, Shiseido). The calibration curves of the sphingoids showed good linearity (r > 0.996) over the range of 0.050–5.00 pmol per injection. The accuracy and precision of this method were demonstrated using four representative biological samples (serum, brain, liver, and spleen) from mice that contained known amounts of the sphingoids. Samples of mice tissue such as plasma, brain, eye, testis, liver, kidney, lung, spleen, lymph node, and thymus were examined for their Sph, dhSph, pSph, S1P, dhS1P, and pS1P composition. The results confirmed the usefulness of this method for the physiological and pathological analysis of the composition of important sphingoids.


Analysis of the biological distribution of seven sphingoids and their phosphates


Sphingoid Sphingoid phosphate LC/MS/MS Simultaneous quantitation Tissue Plasma 



This work was supported in part by a Grant-in-Aid for Scientific Research from Japan. The authors express their sincere appreciation for the collaboration of Shiseido and Thermo Fisher Scientific Co., Ltd.

Supplementary material

216_2012_6004_MOESM1_ESM.pdf (204 kb)
ESM 1 (PDF 204 kb)


  1. 1.
    Young N, Van Brocklyn JR (2006) Signal transduction of sphingosine-1-phosphate G protein-coupled receptors. ScientificWorldJournal 6:946–966CrossRefGoogle Scholar
  2. 2.
    Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5:560–570CrossRefGoogle Scholar
  3. 3.
    Parrill AL, Sardar VM, Yuan H (2004) Sphingosine 1-phosphate and lysophosphatidic acid receptors: agonist and antagonist binding and progress toward development of receptor-specific ligands. Semin Cell Dev Biol 15:467–476CrossRefGoogle Scholar
  4. 4.
    Sanchez T, Hla T (2004) Structural and functional characteristics of S1P receptors. J Cell Biochem 92:913–922CrossRefGoogle Scholar
  5. 5.
    Tamama K, Kon J, Sato K, Tomura H, Kuwabara A, Kimura T, Kanda T, Ohta H, Ui M, Kobayashi I, Okajima F (2001) Extracellular mechanism through the Edg family of receptors might be responsible for sphingosine-1-phosphate-induced regulation of DNA synthesis and migration of rat aortic smooth-muscle cells. Biochem J 353:139–146CrossRefGoogle Scholar
  6. 6.
    Candelore MR, Wright MJ, Tota LM, Milligan J, Shei GJ, Bergstrom JD, Mandala SM (2002) Phytosphingosine 1-phosphate: a high affinity ligand for the S1P(4)/Edg-6 receptor. Biochem Biophys Res Commun 297:600–606CrossRefGoogle Scholar
  7. 7.
    Rosen H, Gonzalez-Cabrera PJ, Sanna MG, Brown S (2009) Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem 78:743–68CrossRefGoogle Scholar
  8. 8.
    Singh IN, Hall ED (2008) Multifaceted roles of sphingosine-1-phosphate: how does this bioactive sphingolipid fit with acute neurological injury? J Neurosci Res 86:1419–1433CrossRefGoogle Scholar
  9. 9.
    Spiegel S, Cuvillier O, Edsall L, Kohama T, Menzeleev R, Olivera A, Thomas D, Tu Z, Van Brocklyn J, Wang F (1998) Roles of sphingosine-1-phosphate in cell growth, differentiation, and death. Biochemistry (Mosc) 63:69–73Google Scholar
  10. 10.
    Edsall LC, Pirianov GG, Spiegel S (1997) Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J Neurosci 17:6952–6960Google Scholar
  11. 11.
    Kluk MJ, Hla T (2002) Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Biophys Acta 1582:72–80Google Scholar
  12. 12.
    Colombaioni L, Garcia-Gil M (2004) Sphingolipid metabolites in neural signalling and function. Brain Res Brain Res Rev 46:328–355CrossRefGoogle Scholar
  13. 13.
    Fyrst H, Saba JD (2010) An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 6:489–97CrossRefGoogle Scholar
  14. 14.
    Taha TA, Hannun YA, Obeid LM (2006) Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol 39:113–131CrossRefGoogle Scholar
  15. 15.
    Liu H, Chakravarty D, Maceyka M, Milstien S, Spiegel S (2002) Sphingosine kinases: a novel family of lipid kinases. Prog Nucleic Acid Res Mol Biol 71:493–511CrossRefGoogle Scholar
  16. 16.
    Olivera A, Spiegel S (2001) Sphingosine kinase: a mediator of vital cellular functions. Prostaglandins 64:123–134Google Scholar
  17. 17.
    Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S (2010) Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 688:141–155CrossRefGoogle Scholar
  18. 18.
    Bandhuvula P, Saba JD (2007) Sphingosine-1-phosphate lyase in immunity and cancer: silencing the siren. Trends Mol Med 13:210–217CrossRefGoogle Scholar
  19. 19.
    Van Veldhoven PP, Gijsbers S, Mannaerts GP, Vermeesch JR, Brys V (2000) Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22(1). Biochim Biophys Acta 1487:128–134Google Scholar
  20. 20.
    Pyne S, Kong KC, Darroch PI (2004) Lysophosphatidic acid and sphingosine 1-phosphate biology: the role of lipid phosphate phosphatases. Semin Cell Dev Biol 15:491–501CrossRefGoogle Scholar
  21. 21.
    Mandala SM (2001) Sphingosine-1-phosphate phosphatases. Prostaglandins 64:143–156Google Scholar
  22. 22.
    Fabrias G, Olaya JM, Cingolani F, Signorelli P, Casas J, Gagliostro V, Ghidoni R (2012) Dihydroceramide desaturase and dihydrosphingolipids: debutant players in the sphingolipid arena. Prog Lipid Res 51:82–94CrossRefGoogle Scholar
  23. 23.
    Omae F, Miyazaki M, Enomoto A, Suzuki M, Suzuki Y, Suzuki A (2004) DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochem Soc 379:687–695Google Scholar
  24. 24.
    Vandenbosch D, Bink A, Govaert G, Cammue BPA, Nelis HJ, Thevissen K, Coenye T (2012) Phytosphingosine-1-phosphate is a signaling molecule involved in miconazole resistance in sessile Candida albicans cells. Antimicrob Agents Chemother. doi: 10.1128/​AAC.05106-11
  25. 25.
    Crossman MW, Hirschberg CB (1997) Biosynthesis of phytosphingosine by the rat. J Bio Chem 252:5815–5819Google Scholar
  26. 26.
    Mano N, Oda Y, Yamada K, Asakawa N, Katayama K (1997) Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Anal Biochem 244:291–300CrossRefGoogle Scholar
  27. 27.
    Yoo HH, Son J, Kim DH (2006) Liquid chromatography-tandem mass spectrometric determination of ceramides and related lipid species in cellular extracts. J Chromatogr B Analyt Technol Biomed Life Sci 843:327–333CrossRefGoogle Scholar
  28. 28.
    Bielawski J, Szulc ZM, Hannun YA, Bielawska A (2006) Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39:82–91CrossRefGoogle Scholar
  29. 29.
    Lan T, Bi H, Liu W, Xie X, Xu S, Huang H (2011) Simultaneous determination of sphingosine and sphingosine 1-phosphate in biological samples by liquid chromatography–tandem mass spectrometry. J Chromatogr B 879:520–526CrossRefGoogle Scholar
  30. 30.
    Cutignano A, Chiuminatto U, Petruzziello F, Vella FM, Fontana A (2010) UPLC–MS/MS method for analysis of sphingosine1-phosphatein biological samples. Prostaglandins Other Lipid Mediat 93:25–29CrossRefGoogle Scholar
  31. 31.
    Iwamori M, Costello C, Moser HW (1979) Analysis and quantitation of free ceramide containing nonhydroxy and 2-hydroxy fatty acids, and phytosphingosine by high-performance liquid chromatography. J Lipid Res 20:86–96Google Scholar
  32. 32.
    Scherer M, Jaschinski KL, Ecker J, Schmitz G, Liebisch G (2010) A rapid and quantitative LC-MS/MS method to profile sphingolipids. J Lipid Res 51:2001–2011CrossRefGoogle Scholar
  33. 33.
    Naor MM, Walker MD, Brocklyn JRV, Tigyi G, Parrill AL (2007) Sphingosine 1-phosphate pKa and binding constants: intramolecular and intermolecular influences. J Mol Graph Model 26:519–528CrossRefGoogle Scholar
  34. 34.
    Stensballe A, Andersen S, Jensen ON (2001) Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1:207–222CrossRefGoogle Scholar
  35. 35.
    Haydon CE, Eyers PA, Aveline-Wolf LD, Resing KA, Maller JL, Ahn NG (2003) Identification of novel phosphorylation sites on Xenopus laevis Aurora A and analysis of phosphopeptide enrichment by immobilized metal-affinity chromatography. Mol Cell Proteomics 2:1055–1067CrossRefGoogle Scholar
  36. 36.
    Kokubu M, Ishihama Y, Sato T, Nagasu T, Oda Y (2005) Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Anal Chem 77:5144–5154CrossRefGoogle Scholar
  37. 37.
    Mano N, Uchida M, Okuyama H, Sasaki I, Ikegawa S, Goto J (2001) Simultaneous detection of cholyl adenylate and coenzyme A thioester utilizing liquid chromatography/electrospray ionization mass spectrometry. Anal Sci 17:1037–1042CrossRefGoogle Scholar
  38. 38.
    Kanda T, Kutsuna H, Ohtsu Y, Yamaguchi M (1994) Synthesis of polymer-coated mixed-functional packing materials for direct analysis of drug-containing serum and plasma by high-performance liquid chromatography. J Chromatogr A 672:51–57CrossRefGoogle Scholar
  39. 39.
    Kanda T, Shirota O, Ohtsu Y, Yamaguchi M (1996) Synthesis and characterization of polymer-coated mixed-functional stationary phases with several different hydrophobic groups for direct analysis of biological samples by liquid chromatography. J Chromatogr A 722:115–121CrossRefGoogle Scholar
  40. 40.
    Islam MN, Yoo HH, Kisung C, Dong MS, Inpark Y, Jin C, Kim DH (2009) Simultaneous determination of phenolic acids and phthalide compounds by liquid chromatography for quality assessment of Rhizoma Cnidii. J AOAC Int 92:375–381Google Scholar
  41. 41.
    Iwasaki Y, Mochizuki K, Nakano Y, Maruya N, Goto M, Maruyama Y, Ito R, Saito K, Nakazawa H (2012) Comparison of fluorescence reagents for simultaneous determination of hydroxylated phenylalanine and nitrated tyrosine by high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr 26:41–50Google Scholar
  42. 42.
    Xia YQ, Jemal M (2009) Phospholipids in liquid chromatography/mass spectrometry bioanalysis: comparison of three tandem mass spectrometric techniques for monitoring plasma phospholipids, the effect of mobile phase composition on phospholipids elution and the association of phospholipids with matrix effects. Rapid Commun Mass Spectrom 23:2125–2138CrossRefGoogle Scholar
  43. 43.
    Ohkawa R, Nakamura K, Okubo S, Ozaki S, Tosuka M, Osima N, Yokota H, Ikeda H, Tatomi Y (2008) Plasma sphingosine-1-phosphate measurement in healthy subjects: close correlation with red blood cell parameters. Ann Clin Biochem 45:356–363CrossRefGoogle Scholar
  44. 44.
    Lan T, Bi H, Liu W, Xie X, Xu S, Huang H (2011) Simultaneous determination of sphingosine and sphingosine 1-phosphate in biological samples by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyst Biomed Life Sci 879(7–8):520–526CrossRefGoogle Scholar
  45. 45.
    Fukuda Y, Kihara A, Igarashi Y (2003) Distribution of sphingosine kinase activity in mouse tissues: contribution of SPHK1. Biochem Biophys Res Commun 309:155–60CrossRefGoogle Scholar
  46. 46.
    Billich A, Bornancin F, Devay P, Mechtcheriakova D, Urtz N, Baumruker T (2003) Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J Biol Chem 278:47408–4741CrossRefGoogle Scholar
  47. 47.
    Mullen TD, Hannun YA, Obeid LM (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem Soc 441:789–802Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Daisuke Saigusa
    • 1
  • Kanako Shiba
    • 1
  • Asuka Inoue
    • 2
  • Kotaro Hama
    • 2
  • Michiyo Okutani
    • 2
  • Nagisa Iida
    • 2
  • Masayoshi Saito
    • 3
  • Kaori Suzuki
    • 3
  • Tohru Kaneko
    • 1
  • Naoto Suzuki
    • 1
  • Hiroaki Yamaguchi
    • 4
  • Nariyasu Mano
    • 4
  • Junichi Goto
    • 4
  • Takanori Hishinuma
    • 3
  • Junken Aoki
    • 2
  • Yoshihisa Tomioka
    • 1
    Email author
  1. 1.Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  2. 2.Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  3. 3.Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  4. 4.Department of Pharmaceutical SciencesTohoku University HospitalSendaiJapan

Personalised recommendations