Analytical and Bioanalytical Chemistry

, Volume 403, Issue 7, pp 1907–1921 | Cite as

Use of the HS-PTR-MS for online measurements of pyrethroids during indoor insecticide treatments

  • Aude Vesin
  • Guy Bouchoux
  • Etienne Quivet
  • Brice Temime-Roussel
  • Henri Wortham
Original Paper

Abstract

A high-sensitivity proton transfer reaction mass spectrometer (HS-PTR-MS) has been used to study the temporal evolution of pesticide concentrations in indoor environments. Because of the high time variability of the indoor air concentrations during household pesticide applications, the use of this online high time resolution instrument is found relevant. Four pyrethroid pesticides of the latest generation that are commonly found in electric vaporizer refills, namely, transfluthrin, empenthrin, tetramethrin, and prallethrin, were considered. A controlled pesticide generation system was settled and coupled to a HS-PTR-MS analyzer, and a calibration procedure based on the fragmentation patterns of the protonated molecules was performed. To illustrate the functionality of the method, measurements of the concentration–time profiles of transfluthrin contained in an electric vaporizer were carried out in a full-scale environmental room under air exchange rate-controlled conditions. This study demonstrates that the HS-PTR-MS technique can provide online and high time-resolved measurements of semi-volatile organic compounds such as pyrethroid insecticides.

Keywords

HS-PTR-MS Pesticides Indoor air quality Gas phase Proton affinity 

References

  1. 1.
    Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252CrossRefGoogle Scholar
  2. 2.
    Schweizer C, Edwards RD, Bayer-Oglesby L, Gauderman WJ, Ilacqua V, Jantunen MJ, Lai HK, Nieuwenhuijsen M, Künzli N (2007) Indoor time microenvironment activity patterns in seven regions of Europe. J Expo Sci Environ Epidemiol 17:170–181CrossRefGoogle Scholar
  3. 3.
    Echols S, Macintosh D, Hammerstrom K, Ryan B (1999) Temporal variability of microenvironmental time budgets in Maryland. J Expo Sci Environ Epidemiol 9:502–512CrossRefGoogle Scholar
  4. 4.
    Whitemore RW, Immerman FW, Camann DE, Bond AE, Lewis RG, Schaum JL (1994) Non-occupational exposure to pesticides for residents of two US cities. Arch Environ Contam Toxicol 26:47–59CrossRefGoogle Scholar
  5. 5.
    Clayton CA, Pellizzari ED, Whitmore RW, Quackenboss JJ, Adgate J, Sefton K (2003) Distributions, associations, and partial aggregate exposure of pesticides and polynuclear aromatic hydrocarbons in the Minnesota Children’s Pesticide Exposure Study (MNCPES). J Expo Anal Environ Epidemiol 13:100–111CrossRefGoogle Scholar
  6. 6.
    Morgan MK, Sheldon LS, Crogan CW, Jones PA, Robertson GL, Chuang JC, Wilson NK, Lyu CW (2005) Exposure of preschool children to chlorpyrifos and its degradation products 3,5,6-trichloro-2-pyridinol in their everyday environments. J Expo Anal Environ Epidemiol 15:297–309CrossRefGoogle Scholar
  7. 7.
    Bouvier G, Blanchard O, Momas I, Seta N (2006) Pesticide exposure of non-occupationally exposed subjects compared to some occupational exposure: a French pilot study. Sci Total Environ 366:74–91CrossRefGoogle Scholar
  8. 8.
    Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometer (PTRMS)—medical applications, food control and environmental research. Int J Mass Spectrom 173:191–241CrossRefGoogle Scholar
  9. 9.
    Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109:861–896CrossRefGoogle Scholar
  10. 10.
    De Gouw J, Warneke C (2007) Measurements of volatile organic compounds in the earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom Rev 26:223–257CrossRefGoogle Scholar
  11. 11.
    Han KH, Zhang JS, Wargocki P, Knudsen HN, Guo B (2010) Determination of material emission signatures by PTRMS and their correlations with odor assessments by human subjects. Indoor Air 20:341–354CrossRefGoogle Scholar
  12. 12.
    Han KH, Zhang JS, Knudsen HN, Wargocki P, Chen H, Varshney PK, Guo B (2011) Development of a novel methodology for indoor emission source identification. Atmos Environ 45:3034–3045CrossRefGoogle Scholar
  13. 13.
    Wisthaler A, Strom-Tejsen P, Fang L, Arnaud TJ, Hansel A, Mark TD, Wyon DP (2007) PTR-MS assessment of photocatalytic and sorption-based purification of recirculated cabin air during simulated 7-h flights with high passenger density. Environ Sci Technol 41:229–234CrossRefGoogle Scholar
  14. 14.
    Fang L, Zhang G, Wisthaler A (2008) Desiccant wheels as gase-phase absorption (GPA) air cleaners: evaluation by PTR-MS and sensory assessment. Indoor Air 18:375–385CrossRefGoogle Scholar
  15. 15.
    Weschler CJ, Wisthaler A, Cowlin S, Tamas G, Strom-Tejsen P, Hodgson AT, Destaillats H, Herrington J, Zhang JJ, Nazaroff WW (2007) Ozone-initiated chemistry in an occupied simulated aircraft cabin. Environ Sci Technol 41:6177–6184CrossRefGoogle Scholar
  16. 16.
    Bekarian N, Payne-Sturges D, Edmondson S, Chism B, Woodruff TJ (2006) Use of point-of-sale data to track usage patterns of residential pesticides: methodology development. Environ Health 5:15CrossRefGoogle Scholar
  17. 17.
    Weschler CJ, Nazaroff WW (2008) Semivolatile organic compounds in indoor environments. Atmos Environ 42:9018–9040CrossRefGoogle Scholar
  18. 18.
    Hunter EP, Lias SG (1998) Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 27:413–656CrossRefGoogle Scholar
  19. 19.
    Hewitt CN, Hayward S, Tani A (2003) The application of proton transfer reaction–mass spectrometry (PTRMS) to the monitoring and analysis of volatile organic compounds in the atmosphere. J Environ Monit 5:1–7CrossRefGoogle Scholar
  20. 20.
    Temime B, Francois S, Monod A, Wortham H (2002) An experimental set up of a PAH vapour generator and its use to test an annular denuder. Environ Pollut 120:609–616Google Scholar
  21. 21.
    Pflieger M, Monod A, Wortham H (2009) Kinetic study of heterogeneous ozonolysis of alachlor, trifluralin and terbuthylazine adsorbed on silica particles under atmospheric conditions. Atmos Environ 43:5597–5603CrossRefGoogle Scholar
  22. 22.
    Gautrois M, Koppmann R (1999) Diffusion technique for the production of gas standards for atmospheric measurements. J Chromatogr A 848:239–249CrossRefGoogle Scholar
  23. 23.
    Tumbiolo S, Vincent L, Gal JF, Maria PC (2005) Thermogravimetric calibration of permeation tubes used for the preparation of gas standards for air pollution analysis. Analyst 130:1369–1374CrossRefGoogle Scholar
  24. 24.
    Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J Chem Phys 127:124105Google Scholar
  25. 25.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian, Inc., WallingfordGoogle Scholar
  26. 26.
    Bouchoux G (2007) Gas-phase basicities of polyfunctional molecules. Part I: Theory and methods. Mass Spectrom Rev 26:775–835CrossRefGoogle Scholar
  27. 27.
    Su T, Chesnavich WJ (1982) Parametrization of the ion-polar molecule collision rate-constant by trajectory calculations. J Chem Phys 76:5183–5185CrossRefGoogle Scholar
  28. 28.
    Zhao J, Zhang R (2004) Proton transfer reaction rate constants between hydronium ion (H3O+) and volatile organic compounds. Atmos Environ 38:2177–2185CrossRefGoogle Scholar
  29. 29.
    Warneke C, van der Veen C, Luxembourg S, de Gouw JA, Kok A (2001) Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: calibration, humidity dependence, and field intercomparison. Int J Mass Spectrom 207:167–182CrossRefGoogle Scholar
  30. 30.
    Tani A, Hayward S, Hansel A, Hewitt CN (2004) Effect of water vapour pressure on monoterpene measurements using proton transfer reaction–mass spectrometry (PTR-MS). Int J Mass Spectrom 239:161–169CrossRefGoogle Scholar
  31. 31.
    Fleet IA, Monaghan JJ (1997) Comparison of electrospray mass spectrometry of chrysanthemic acid ester pyrethroid insecticides with electron ionization and positive-ion ammonia chemical ionization methods. Rapid Commun Mass Spectrom 11:796–802CrossRefGoogle Scholar
  32. 32.
    Schwarz K, Filipiak W, Amann A (2009) Determining concentration patterns of volatile organic compounds in exhaled breath by PTRMS. J Breath Res 3:1–15Google Scholar
  33. 33.
    Sinha V, Custer TG, Kluepfel T, Williams J (2009) The effect of relative humidity on the detection of pyrrole by PTR-MS for OH reactivity measurements. Int J Mass Spectrom 282:108–111CrossRefGoogle Scholar
  34. 34.
    De Gouw JA, Goldan PD, Warneke C, Kuster WC, Roberts JM, Marchewka M, Bertman SB, Pszenny AAP, Keene WC (2003) Validation of proton transfer reaction–mass spectrometry (PTRMS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. J Geophys Res 108:365–382Google Scholar
  35. 35.
    Taipale R, Ruuskanen TM, Rinne J, Kajos MK, Hakola H, Pohja T, Kulmala M (2008) Technical note: quantitative long-term measurements of VOC concentrations by PTR-MS measurements, calibration, and mixing ratio calculation methods. Atmos Chem Phys 8:6681–6698CrossRefGoogle Scholar
  36. 36.
    Czako G, Nagy B, Tasi G, Somogyi A, Simunek J, Noga J, Braams BJ, Bowman JM, Csaszar AG (2009) Proton affinity and enthalpy of formation of formaldehyde. Int J Quantum Chem 109:2393–2409CrossRefGoogle Scholar
  37. 37.
    Vlasenko A, Macdonald AM, Sjostedt SJ, Abbatt JPD (2010) Formaldehyde measurements by proton transfer reaction—mass spectrometry (PTR-MS): correction for humidity effects. Atmos Meas Tech 3:1055–1062CrossRefGoogle Scholar
  38. 38.
    Blake RS, Whyte C, Hughes CO, Ellis AM, Monks PS (2004) Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds. Anal Chem 76:3841–3845CrossRefGoogle Scholar
  39. 39.
    Jordan A, Haidacher S, Hanel G, Hartungen E, Maerk L, Seehauser H, Schottkowsky R, Sulzer P, Maerk TD (2009) A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Int J Mass Spectrom 286:122–128CrossRefGoogle Scholar
  40. 40.
    Barro R, Garcia-Jares C, Llompart M, Bollain MH, Cela R (2006) Rapid and sensitive determination of pyrethroids indoors using active sampling followed by ultrasound-assisted solvent extraction and gas chromatography. J Chromatogr A 1111:1–10CrossRefGoogle Scholar
  41. 41.
    Yoshida T (2009) Simultaneous determination of 18 pyrethroids in indoor air by gas chromatography/mass spectrometry. J Chromatogr A 1216:5069–5076CrossRefGoogle Scholar
  42. 42.
    Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG (2003) Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol 37:4543–4553CrossRefGoogle Scholar
  43. 43.
    Borras E, Sanchez P, Munoz A, Tortajada-Genaro LA (2011) Development of a gas chromatography–mass spectrometry method for the determination of pesticides in gaseous and particulate phases in the atmosphere. Anal Chim Acta 699:57–65CrossRefGoogle Scholar
  44. 44.
    Hayward SJ, Gouin T, Wania F (2010) Comparison of four active and passive sampling techniques for pesticides in air. Environ Sci Technol 44:3410–3416CrossRefGoogle Scholar
  45. 45.
    Wang J, Tuduri L, Millet M, Briand O, Montury M (2009) Flexibility of solid-phase microextraction for passive sampling of atmospheric pesticides. J Chromatogr A 1216:3031–3037CrossRefGoogle Scholar
  46. 46.
    Ambrose JL, Haase K, Russo RS, Zhou Y, White ML, Frinak EK, Jordan C, Mayne HR, Talbot R, Sive BC (2010) A comparison of GC-FID and PTRMS measurements in ambient air under conditions of enhanced monoterpene loading. Atmos Meas Tech 3:959–980CrossRefGoogle Scholar
  47. 47.
    Leva P, Katsoyiannis A, Barrero-Morero J, Kephalopoulos S, Kotzias D (2009) Evaluation of fate of the active ingredients of insecticides sprays used indoors. J Environ Sci Health B 44:51–57CrossRefGoogle Scholar
  48. 48.
    Berger-Preiss E, Koch W, Gerling S, Kock H, Appel KE (2009) Use of biocidal products (insect sprays and electro-vaporizer) in indoor areas—exposure scenarios and exposure modelling. Int J Hyg Environ Health 212:505–518CrossRefGoogle Scholar
  49. 49.
    Dobson R, Scheyer A, Rizet AL, Mirabel P, Millet M (2006) Comparison of the efficiencies of different types of adsorbants at trapping currently used pesticides in the gaseous phase using the technique of high volume sampling. Anal Bioanal Chem 386:1781–1789CrossRefGoogle Scholar
  50. 50.
    Lu C, Fenske RA (1998) Air and surface chlorpyrifos residues following residential broadcast and aerosol pesticide applications. Environ Sci Technol 32:1386–1390CrossRefGoogle Scholar
  51. 51.
    Stout DM, Mason MA (2003) The distribution of chlorpyrifos following a crack and crevice type application in the US EPA indoor air quality research house. Arch Environ Contam Toxicol 50:31–44Google Scholar
  52. 52.
    Berger-Preiss E, Kriemhild AS, Mechthikd R, Bert I, Karsten L (1997) The behaviour of pyrethroids indoors: a model study. Indoor Air 7:248–261CrossRefGoogle Scholar
  53. 53.
    Ramesh A, Vijayalakshmi A (2001) Monitoring of allethrin, deltamethrin, esbiothrin, prallethrin and transfluthrin in air during the use of household mosquito repellents. J Environ Monit 3:191–193CrossRefGoogle Scholar
  54. 54.
    Garcia-Jares C, Regueiro J, Barro R, Dagnac T, Llompart M (2009) Analysis of industrial contaminants in indoor air. Part 2. Emergent contaminants and pesticides. Atmos Environ 37:5477–5483Google Scholar
  55. 55.
    Fernandez-Alvarez M, Lores M, Llompart M, Garcia-Jares C, Cela R (2007) The photochemical behaviour of five household pyrethroid insecticides and a synergist as studied by photo-solid-phase microextraction. Anal Bioanal Chem 338:1235–1247CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Aude Vesin
    • 1
    • 2
  • Guy Bouchoux
    • 3
  • Etienne Quivet
    • 1
    • 2
  • Brice Temime-Roussel
    • 1
    • 2
  • Henri Wortham
    • 1
    • 2
  1. 1.Aix-Marseille Univ, LCE-IRAMarseilleFrance
  2. 2.CNRS, FRE 3416MarseilleFrance
  3. 3.Département de Chimie, CNRS UMR 7651Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations