Advertisement

Analytical and Bioanalytical Chemistry

, Volume 403, Issue 10, pp 3013–3024 | Cite as

Quantum dot based rapid tests for zearalenone detection

  • N. V. Beloglazova
  • E. S. Speranskaya
  • S. De Saeger
  • Z. Hens
  • S. Abé
  • I. Yu. Goryacheva
Original Paper

Abstract

Three different kinds of immunosorbent assays with luminescence detection were developed for the determination of zearalenone (ZEN), a secondary toxic metabolite of Fusarium fungi. CdSe/ZnS core/shell quantum dots (QDs) were used as a label in quantitative micro-well plate immunoassays (fluorescent-labeled immunosorbent assay, FLISA) and in qualitative column test methods. As carriers for QD-based column tests, sepharose gel (for covalent binding of antibody) and polyethylene frits (for physical absorption of antibody) were used and compared. The application of QDs as a label resulted in a fourfold decrease in the IC50 value with FLISA (0.1 ng mL−1) with a detection limit of 0.03 ng mL−1 when compared with the traditional immunosorbent assay which makes use of horseradish peroxidase as the enzyme label. The cutoff levels for both qualitative column test methods were selected based on the maximum level for ZEN in unprocessed cereals established by the European Commission (100 μg kg−1) as 5 ng mL−1 taking into account extraction and dilution. The different developed immumoassays were tested for ZEN determination in raw wheat samples. As a confirmatory method, liquid chromatography coupled to tandem mass spectrometry was used. The obtained results allow using FLISA and both qualitative column test methods for the analysis of analytes with very low established maximum limits, even in very complicated food matrices, owing to the high dilution of the sample extract.

Keywords

Quantum dots Immunoassay On-site method Enzyme-linked immunoassay Fluorescent-labeled immunoassay Zearalenone 

Notes

Acknowledgment

This research was supported by The Russian Foundation of Basic Research (RFBR, project 11-03-93963) and the Special Research Fund (BOF), Ghent, University (01W02008). N.V. Beloglazova also benefits from a fellowship granted by the Belgian Federal Science Policy Office in order to promote the S&T cooperation with Central and Eastern Europe. We gratefully acknowledge Prof. Tom Coenye (Ghent University) for making available the use of Envision 2104 Multilabel Plate Reader and MSc. Marthe De Boevre (Ghent University) for chromatographic experiments.

References

  1. 1.
    Chen YP, Ning B, Liu N, Feng Y, Liu Z, Liu X, Gao ZX (2010) J Environ Sci Health B 45:508–515CrossRefGoogle Scholar
  2. 2.
    Kuang H, Zhao Y, Ma W, Xu L, Wang L, Xu Ch (2011) TrAC Trends Anal Chem 30:1620–1636CrossRefGoogle Scholar
  3. 3.
    Park JJ, De Paoli Lacerda SH, Stanley SK, Vogel BM, Kim S, Douglas JF, Raghavan D, Karim A (2009) Langmuir 25:443–450CrossRefGoogle Scholar
  4. 4.
    Li Z, Wang K, Tan W, Li J, Fu Z, Ma C, Li H, He X, Liu J (2006) Anal Biochem 354:169–174CrossRefGoogle Scholar
  5. 5.
    So M, Yao H, Rao J (2008) Biochem Biophys Res Commun 374:419–423CrossRefGoogle Scholar
  6. 6.
    Wang Y, Chen L (2011) Nanomed Nanotechnol Biol Med 7:385–402CrossRefGoogle Scholar
  7. 7.
    Azzazy HME, Mansour MMH, Kazmierczak SC (2007) Clin Biochem 40:917–927CrossRefGoogle Scholar
  8. 8.
    Gill R, Zayats M, Willner I (2008) Angew Chem Int Ed 47:7602–7625CrossRefGoogle Scholar
  9. 9.
    Vinayaka AC, Basheer S, Thakur MS (2009) Biosens Bioelectron 24:1615–1620CrossRefGoogle Scholar
  10. 10.
    Zhang B, Cheng J, Li D, Liu X, Ma G, Chang J (2008) Mater Sci Eng B 149:87–92CrossRefGoogle Scholar
  11. 11.
    Pinwattana K, Wang J, Lin CT, Wu H, Du D, Lin Y, Chailapakul O (2010) Biosens Bioelectron 26:1109–1113CrossRefGoogle Scholar
  12. 12.
    Feng HT, Law WS, Yu LJ, Li SFY (2007) J Chromatogr A 1156:75–79CrossRefGoogle Scholar
  13. 13.
    Beckman EM, Kawaguchi T, Chandler GT, Decho AW (2008) J Microbiol Methods 75:441–444CrossRefGoogle Scholar
  14. 14.
    Sun M, Du L, Gao S, Bao Y, Wang S (2010) Steroids 75:400–403CrossRefGoogle Scholar
  15. 15.
    Warner MG, Grate JW, Tyler A, Ozanich RM, Miller KD, Lou J, Marks JD, Bruckner-Lea CJ (2009) Biosens Bioelectron 25:179–184CrossRefGoogle Scholar
  16. 16.
    Trapiella-Alfonso L, Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2011) Biosens Bioelectron 26:4753–4759CrossRefGoogle Scholar
  17. 17.
    Zhang B, Liang X, Hao L, Cheng J, Gong X, Liu X, Ma G, Chang J (2009) J Photochem Photobiol B 94:45–50CrossRefGoogle Scholar
  18. 18.
    Lucas LJ, Chesler JN, Yoon JY (2007) Biosens Bioelectron 23:675–681CrossRefGoogle Scholar
  19. 19.
    Chouhan RS, Vinayaka AC, Thakur MS (2010) Anal Bioanal Chem 397:1467–1475CrossRefGoogle Scholar
  20. 20.
    Zou Z, Du D, Wang J, Smith JN, Timchalk C, Li Y, Lin Y (2010) Anal Chem 82:5125–5133CrossRefGoogle Scholar
  21. 21.
    Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y (2010) Anal Chem 82:7008–7014CrossRefGoogle Scholar
  22. 22.
    Yang Q, Gong X, Song T, Yang J, Zhu S, Li Y, Cui Y, Li Y, Zhang B, Chang J (2011) Biosens Bioelectron 30:145–150CrossRefGoogle Scholar
  23. 23.
    Wang L, Chen W, Ma W, Liu L, Ma W, Zhao Y, Zhu Y, Xu L, Kuang H, Xu Ch (2011) Chem Commun 47:1574–1576CrossRefGoogle Scholar
  24. 24.
    Beloglazova NV, Goryacheva IY, de Saeger S, Scippo ML, Niessner R, Knopp D (2011) Talanta 85:151–156CrossRefGoogle Scholar
  25. 25.
    EC (2007) Commission Regulation 1126/2007 of 28 September 2007 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off J Eur Union L255/14Google Scholar
  26. 26.
    Rosenberg E, Krska R, Wissiack R, Kmetov V, Josephs R, Razzazi E, Grasserbauer M (1998) J Chromatogr A 819:277–288CrossRefGoogle Scholar
  27. 27.
    De Saeger S, Sibanda L, Van Peteghem C (2003) Anal Chim Acta 487:137–143CrossRefGoogle Scholar
  28. 28.
    Burmistrova NA, Goryacheva IY, Basova EY, Franki AS, Elewaut D, Van Beneden K, Deforce D, Van Peteghem C, De Saeger S (2009) Anal Bioanal Chem 39:1301–1307CrossRefGoogle Scholar
  29. 29.
    Kolosova AY, De Saeger S, Sibanda L, Verheijen R, Van Peteghem C (2007) Anal Bioanal Chem 389:2103–2107CrossRefGoogle Scholar
  30. 30.
    Ma Z, Huang B, Zhang J, Zhang Y, Zhu L, Tu Q (2009) J Rare Earths 27:1088–1091CrossRefGoogle Scholar
  31. 31.
    Chun HS, Choi EH, Chang HJ, Choi SW, Eremin SA (2009) Anal Chim Acta 639:83–89CrossRefGoogle Scholar
  32. 32.
    Jasieniak J, Bullen C, Van Embden J, Mulvaney P (2005) J Phys Chem B 109:20665–20668CrossRefGoogle Scholar
  33. 33.
    Zhu C-Q, Wang P, Wang X, Li Y (2008) Nanoscale Res Lett 3:213–220CrossRefGoogle Scholar
  34. 34.
    Wang Q, Kuo Y, Wang Y, Shin G, Ruengruglikit C, Huang Q (2006) J Phys Chem B 110:16860–16866CrossRefGoogle Scholar
  35. 35.
    Hermanson GT (2008) Bioconjugate techniques. Academic, San DiegoGoogle Scholar
  36. 36.
    Shan Y, Wang L, Shi Y, Zhang H, Li H, Liu H, Yang B, Li T, Fang X, Li W (2008) Talanta 75:1008–1014CrossRefGoogle Scholar
  37. 37.
    Beloglazova NV, Goryacheva IY, Niessner R, Knopp D (2011) Microchim Acta 175:361–367CrossRefGoogle Scholar
  38. 38.
    Trullols E, Ruisanchez I, Xavier Rius F (2004) Trends Anal Chem 23:137–145CrossRefGoogle Scholar
  39. 39.
    De Boevre M, Di Mavungu JD, Maene P, Audenaert K, Deforce D, Haesaert G, Eeckhout M, Callebaut A, Berthiller F, Van Peteghem C, De Saeger S (2012) Food Addit Contam 29:819–835Google Scholar
  40. 40.
    EC Commission Regulation 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off J Eur Union L70/12Google Scholar
  41. 41.
    Capek RK, Moreels I, Lambert K, De Muynck D, Zhao Q, Van Tomme A, Vanhaecke F, Hens Z (2010) J Phys Chem 114:6371–6376Google Scholar
  42. 42.
    Lim SJ, Chon B, Joo T, Shin SK (2008) J Phys Chem 112:1744–1747Google Scholar
  43. 43.
    Reiss P, Protière M, Liang L (2009) Small 5:154–168CrossRefGoogle Scholar
  44. 44.
    Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Nano Lett 1:207–211CrossRefGoogle Scholar
  45. 45.
    Protiere M, Reiss P (2006) Nanoscale Res Lett 1:62–67CrossRefGoogle Scholar
  46. 46.
    Gao X, Chan WC, Nie S (2002) J Biomed Opt 7:532–537CrossRefGoogle Scholar
  47. 47.
    Yu WW, Chang E, Drezek R, Colvin VL (2006) Biochem Biophys Res Commun 348:781–786CrossRefGoogle Scholar
  48. 48.
    Aldana J, Lavelle N, Wang Y, Peng X (2005) J Am Chem Soc 127:2496–2504CrossRefGoogle Scholar
  49. 49.
    Willard DM, Carillo LL, Jung J, Orden AV (2001) Nano Lett 1:469–474CrossRefGoogle Scholar
  50. 50.
    Aldana J, Wang YA, Peng X (2001) J Am Chem Soc 123:8844–8850CrossRefGoogle Scholar
  51. 51.
    Basova EY, Goryacheva IY, Rusanova TY, Burmistrova NA, Dietrich R, Märtlbauer E, Detavernier C, Van Peteghem C, De Saeger S (2010) Anal Bioanal Chem 397:55–62CrossRefGoogle Scholar
  52. 52.
    EC Commission Decision 657/2002 of 12 August 2002 Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Communities L221/8Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • N. V. Beloglazova
    • 1
  • E. S. Speranskaya
    • 2
  • S. De Saeger
    • 1
  • Z. Hens
    • 3
  • S. Abé
    • 3
  • I. Yu. Goryacheva
    • 2
  1. 1.Faculty of Pharmaceutical Sciences, Laboratory of Food AnalysisGhent UniversityGhentBelgium
  2. 2.Chemistry Faculty, Department of General and Inorganic ChemistrySaratov State UniversitySaratovRussia
  3. 3.Department of Inorganic and Physical ChemistryGhent UniversityGhentBelgium

Personalised recommendations