Advertisement

Analytical and Bioanalytical Chemistry

, Volume 403, Issue 6, pp 1477–1484 | Cite as

Nanostructured substrates for portable and miniature SPR biosensors

  • Julien Breault-Turcot
  • Jean-Francois Masson
Trends

Abstract

Surface plasmon resonance (SPR) biosensing has matured into a valuable analytical technique for measurements related to biomolecules, environmental contaminants, and the food industry. Contemporary SPR instruments are mainly suitable for laboratory-based measurements. However, several point-of-measurement applications would benefit from simple, small, portable and inexpensive sensors to assess the health condition of a patient, potential environmental contamination, or food safety issues. This Trend article explores nanostructured substrates for improving the sensitivity of classical SPR instruments and nanoparticle (NP)-based colorimetric substrates that may provide a solution to the development of point-of-measurement SPR techniques. Novel nanomaterials and methodology capable of enhancing the sensitivity of classical SPR sensors are destined to improve the limits of detection of miniature SPR instruments to the level required for most applications. In a different approach, paper or substrate-based SPR assays based on NPs, are a highly promising topic of research that may facilitate the widespread use of a novel class of miniature and portable SPR instruments.

Figure

Miniature plasmonic sensors based on nano structured substrates

Keywords

Kretschmann SPR Au nanoparticles Portable SPR Grating substrates Enhanced sensitivity Paper-based SPR sensors 

References

  1. 1.
    Shankaran DR, Gobi KVA, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B 121(1):158–177. doi: 10.1016/j.snb.2006.09.014 CrossRefGoogle Scholar
  2. 2.
    Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17(19):16505–16517CrossRefGoogle Scholar
  3. 3.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493. doi: 10.1021/cr068107d CrossRefGoogle Scholar
  4. 4.
    Naimushin AN, Soelberg SD, Bartholomew DU, Elkind JL, Furlong CE (2003) A portable surface plasmon resonance (SPR) sensor system with temperature regulation. Sens Actuators B 96(1–2):253–260. doi: 10.1016/s0925-4005(03)00533-1 CrossRefGoogle Scholar
  5. 5.
    Stevens RC, Soelberg SD, Near S, Furlong CE (2008) Detection of Cortisol in Saliva with a Flow-Filtered. Portable Surface Plasmon Resonance Biosensor System Anal Chem 80:6747–6751Google Scholar
  6. 6.
    Chinowsky TM, Soelberg SD, Baker P, Swanson NR, Kauffman P, Mactutis A, Grow MS, Atmar R, Yee SS, Furlong CE (2007) Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens Bioelectron 22(9–10):2268–2275. doi: 10.1016/j.bios.2006.11.026 CrossRefGoogle Scholar
  7. 7.
    Fernandez F, Pinacho DG, Sanchez-Baeza F, Marco MP (2011) Portable surface plasmon resonance immunosensor for the detection of fluoroquinolone antibiotic residues in milk. J Agric Food Chem 59(9):5036–5043. doi: 10.1021/jf1048035 CrossRefGoogle Scholar
  8. 8.
    Piliarik M, Vala M, Tichy I, Homola J (2009) Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosens Bioelectron 24(12):3430–3435. doi: 10.1016/j.bios.2008.11.003 CrossRefGoogle Scholar
  9. 9.
    Kawazumi H, Gobi KV, Ogino K, Maeda H, Miura N (2005) Compact surface plasmon resonance (SPR) immunosensor using multichannel for simultaneous detection of small molecule compounds. Sens Actuators B 108(1–2):791–796. doi: 10.1016/j.snb.2004.11.069 CrossRefGoogle Scholar
  10. 10.
    Fernandez F, Hegnerova K, Piliarik M, Sanchez-Baeza F, Homola J, Marco MP (2010) A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens Bioelectron 26(4):1231–1238. doi: 10.1016/j.bios.2010.06.012 CrossRefGoogle Scholar
  11. 11.
    Kim SJ, Gobi KV, Iwasaka H, Tanaka H, Miura N (2007) Novel miniature SPR immunosensor equipped with all-in-one multi-microchannel sensor chip for detecting low-molecular-weight analytes. Biosens Bioelectron 23(5):701–707. doi: 10.1016/j.bios.2007.08.010 CrossRefGoogle Scholar
  12. 12.
    Masson JF, Battaglia TM, Khairallah P, Beaudoin S, Booksh KS (2007) Quantitative measurement of cardiac markers in undiluted serum. Anal Chem 79(2):612–619. doi: 10.1021/ac061089f CrossRefGoogle Scholar
  13. 13.
    Shin Y-B, Kim HM, Jung Y, Chung BH (2010) A new palm-sized surface plasmon resonance (SPR) biosensor based on modulation of a light source by a rotating mirror. Sens Actuators B 150(1):1–6. doi: 10.1016/j.snb.2010.08.006 CrossRefGoogle Scholar
  14. 14.
    Slavìk R, Homola J, Brynda E (2002) A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosens Bioelectron 17:591–595CrossRefGoogle Scholar
  15. 15.
    Shalabney A, Abdulhalim I (2011) Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev 5(4):571–606. doi: 10.1002/lpor.201000009 CrossRefGoogle Scholar
  16. 16.
    Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil Mag 4:396–402Google Scholar
  17. 17.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Physics Reports-Review Section of Physics Letters 408(3–4):131–314. doi: 10.1016/j.physrep. 2004.11.001 CrossRefGoogle Scholar
  18. 18.
    Alleyne CJ, Kirk AG, McPhedran RC, Nicorovici N-AP, Maystre D (2007) Enhanced SPR sensitivity using periodic metallic structures. Optics Express 15(13):8163–8169. doi: 10.1364/oe.15.008163 CrossRefGoogle Scholar
  19. 19.
    Hoa XD, Kirk AG, Tabrizian M (2009) Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings. Biosens Bioelectron 24(10):3043–3048. doi: 10.1016/j.bios.2009.03.021 CrossRefGoogle Scholar
  20. 20.
    Dhawan A, Canva M, Vo-Dinh T (2011) Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Optics Express 19(2):787–813. doi: 10.1364/oe.19.000787 CrossRefGoogle Scholar
  21. 21.
    Halpern AR, Chen Y, Corn RM, Kim D (2011) Surface Plasmon Resonance Phase Imaging Measurements of Patterned Mono layers and DNA Adsorption onto Microarrays. Anal Chem 83(7):2801–2806. doi: 10.1021/ac200157p CrossRefGoogle Scholar
  22. 22.
    Han Y, Corn RM (2011) Characterization and Application of Surface Plasmon-Enhanced Optical Diffraction from Electrodeposited Gold Nanowire Arrays. J Phys Chem Lett 2(13):1601–1606. doi: 10.1021/jz200669m CrossRefGoogle Scholar
  23. 23.
    Live LS, Bolduc OR, Masson JF (2010) Propagating Surface Plasmon Resonance on Microhole Arrays. Anal Chem 82(9):3780–3787. doi: 10.1021/ac100177j CrossRefGoogle Scholar
  24. 24.
    Bolduc OR, Live LS, Masson JF (2009) High-resolution surface plasmon resonance sensors based on a Dove prism. Talanta 77(5):1680–1687. doi: 10.1016/j.talanta.2008.10.006 CrossRefGoogle Scholar
  25. 25.
    Bolduc OR, Masson J-F (2011) Advances in Surface Plasmon Resonance Sensing with Nanoparticles and Thin Films: Nanomaterials, Surface Chemistry, and Hybrid Plasmonic Techniques. Anal Chem 83(21):8057–8062. doi: 10.1021/ac2012976 CrossRefGoogle Scholar
  26. 26.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Anal Chem 82(1):3–10. doi: 10.1021/ac9013989 CrossRefGoogle Scholar
  27. 27.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453. doi: 10.1038/nmat2162 CrossRefGoogle Scholar
  28. 28.
    Meyer SA, Le Ru EC, Etchegoin PG (2011) Combining Surface Plasmon Resonance (SPR) Spectroscopy with Surface-Enhanced Raman Scattering (SERS). Anal Chem 83(6):2337–2344. doi: 10.1021/ac103273r CrossRefGoogle Scholar
  29. 29.
    Brouard D, Viger ML, Bracamonte AG, Boudreau D (2011) Label-Free Biosensing Based on Multilayer Fluorescent Nanocomposites and a Cationic Polymeric Transducer. Acs Nano 5(3):1888–1896. doi: 10.1021/nn102776m CrossRefGoogle Scholar
  30. 30.
    Luckham RE, Brennan JD (2010) Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on sol–gel/enzyme/gold nanoparticle composites. Analyst 135(8):2028–2035. doi: 10.1039/c0an00283f CrossRefGoogle Scholar
  31. 31.
    Fan M, Thompson M, Andrade ML, Brolo AG (2010) Silver Nanoparticles on a Plastic Platform for Localized Surface Plasmon Resonance Biosensing. Anal Chem 82(15):6350–6352. doi: 10.1021/ac101495m CrossRefGoogle Scholar
  32. 32.
    Lee Y-F, Huang C-C (2011) Colorimetric Assay of Lead Ions in Biological Samples Using a Nanogold-Based Membrane. Acs Appl Mater Interfaces 3(7):2747–2754. doi: 10.1021/am200535s CrossRefGoogle Scholar
  33. 33.
    Lei KF, Butt YKC (2010) Colorimetric immunoassay chip based on gold nanoparticles and gold enhancement. Microfluidics Nanofluidics 8(1):131–137. doi: 10.1007/s10404-009-0490-x CrossRefGoogle Scholar
  34. 34.
    Yeh C-H, Hung C-Y, Chang TC, Lin H-P, Lin Y-C (2009) An immunoassay using antibody-gold nanoparticle conjugate, silver enhancement and flatbed scanner. Microfluidics Nanofluidics 6(1):85–91. doi: 10.1007/s10404-008-0298-0 CrossRefGoogle Scholar
  35. 35.
    Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74(3):504–509. doi: 10.1021/ac015657x CrossRefGoogle Scholar
  36. 36.
    Zhang K, Song C, Li Q, Li Y, Sun Y, Yang K, Jin B (2010) The establishment of a highly sensitive ELISA for detecting bovine serum albumin (BSA) based on a specific pair of monoclonal antibodies (mAb) and its application in vaccine quality control. Human Vaccines 6(8):652–658. doi: 10.4161/hv.6.8.11935 CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Bolduc OR, Pelletier JN, Masson J-F (2010) SPR Biosensing in Crude Serum Using Ultralow Fouling Binary Patterned Peptide SAM. Anal Chem 82(9):3699–3706. doi: 10.1021/ac100035s CrossRefGoogle Scholar
  39. 39.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081. doi: 10.1126/science.277.5329.1078 CrossRefGoogle Scholar
  40. 40.
    Chi H, Liu B, Guan G, Zhang Z, Han M-Y (2010) A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Analyst 135(5):1070–1075. doi: 10.1039/c000285b CrossRefGoogle Scholar
  41. 41.
    Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Anal Chem 9(15):2363–2371. doi: 10.1002/cbic.200800282 Google Scholar
  42. 42.
    Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanana R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37(5):1001–1011. doi: 10.1039/b708461g CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Departement de chimieUniversite de MontrealMontrealCanada

Personalised recommendations