Analytical and Bioanalytical Chemistry

, Volume 403, Issue 6, pp 1549–1566 | Cite as

Current bioanalytical methods for detection of penicillins

  • Ruth Babington
  • Sonia Matas
  • M.-Pilar Marco
  • Roger Galve


With the worldwide use of penicillin antibiotics comes the need for tighter controls. Bacterial resistance is a genuine problem and governmental and international bodies, for example the European Medicines Agency (EMA) and the World Health Organization (WHO), have designed strategies to overcome this unfortunate consequence of antibiotic use. Foodstuffs are monitored to ensure they contain very low quantities of antibiotics, so they are not prejudicial to health and the environment. Detection is based on chromatographic methods. However, screening can be performed by use of simpler, rapid methods of detection, e.g. microbial inhibition test, lateral flow assays, immunoassays, and use of biosensors, to reduce the final number of samples to be analyzed by chromatography. In this review, we have gathered information regarding all such screening methods for the penicillins and have critically assessed their capability and specificity for detection of penicillins.


Penicillin β-Lactam PBP Bioassay Immunoassay Biosensor 



This work was supported by the Ministry of Science and Innovation (SAF2008-03082). The AMR group is a consolidated research group (Grup de Recerca) of the Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació la Generalitat de Catalunya (expedient 2009 SGR 1343). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.


  1. 1.
    Foley EG, Lee SW, Epstein GA (1946) The effect of penicillin on staphylococci and streptococci commonly associated with bovine mastitis. Milk Food Technol 8:5Google Scholar
  2. 2.
    Mitchell JM, Griffiths MW, McEven SA, McNab WB, Yee J (1998) Antimicrobial drug residues in milk and meat: causes, concerns, prevalence, regulations, tests, and test performance. Food Production 61:15Google Scholar
  3. 3.
    Yamaki M, Berruga MI, Althaus RL, Molina MP, Molina A (2004) Occurrence of antibiotic residues in milk from Manchega Ewe Dairy Farms. J Dairy Sci 87(10):3132–3137CrossRefGoogle Scholar
  4. 4.
    Thavarungkul P, Dawan S, Kanatharana P, Asawatreratanakul P (2007) Detecting penicillin G in milk with impedimetric label-free immunosensor. Biosens Bioelectron 23(5):688–694CrossRefGoogle Scholar
  5. 5.
    Wilkowske HH, Krienke WA (1951) Influence of penicillin on the lactic acid production of certain lactobacilli. J Dairy Sci 34(10):1030–1033CrossRefGoogle Scholar
  6. 6.
    Agency EM (2008) Committee for veterinary medicinal products penicillins summary report. European Medicines Agency, LondonGoogle Scholar
  7. 7.
    Water Framework Directive 2000/60/EC (2000) Off J Eur CommunitiesGoogle Scholar
  8. 8.
    Richardson SD (2003) Water analysis: emerging contaminants and current issues. Anal Chem 75(12):2831–2857. doi: 10.1021/ac0301301 CrossRefGoogle Scholar
  9. 9.
    Hirsch R, Ternes T, Haberer K, Kratz K-L (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225(1–2):109–118Google Scholar
  10. 10.
    Campagnolo ER, Johnson KR, Karpati A, Rubin CS, Kolpin DW, Meyer MT, Esteban JE, Currier RW, Smith K, Thu KM, McGeehin M (2002) Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci Total Environ 299(1–3):89–95Google Scholar
  11. 11.
    Mojica ERE, Aga DS (2011) Antibiotics Pollution in Soil and Water: Potential Ecological and Human Health Issues. In: Jerome ON (ed) Encyclopedia of Environmental Health. Elsevier, Burlington, pp 97–110CrossRefGoogle Scholar
  12. 12.
    Thong BYH, Tan T-C (2011) Epidemiology and risk factors for drug allergy. Br J Clin Pharmacol 71(5):684–700CrossRefGoogle Scholar
  13. 13.
    Mediavilla A, Garcia-Lobo JM (2001) Antibioticos [Beta]-lactamicos. In: Farmacologia Humana. MASSON, S.A., pp 1085–1106Google Scholar
  14. 14.
    Elander RP (2003) Industrial production of [beta]-lactam antibiotics. Appl Microbiol Biotechnol 61:8Google Scholar
  15. 15.
    Council Regulation 2377/90/EC laying down a community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin (1990) Off J Eur CommunitiesGoogle Scholar
  16. 16.
    Council Directive 96/23/EC on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC (1996) Off J Eur CommunitiesGoogle Scholar
  17. 17.
    Commission Decision 97/747/EC fixing the levels and frequencies of sampling provided for by Council Directive 96/23/EC for the monitoring of certain substances and residues thereof in certain animal products (1997) Off J Eur CommunitiesGoogle Scholar
  18. 18.
    Commission Decision 2002/657/EC implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002) Off J Eur CommunitiesGoogle Scholar
  19. 19.
    Roca M, Villegas L, Kortabitarte ML, Althaus RL, Molina MP (2011) Effect of heat treatments on stability of β-lactams in milk. J Dairy Sci 94(3):1155–1164CrossRefGoogle Scholar
  20. 20.
    Kantiani L, Farré M, Barceló D (2009) Analytical methodologies for the detection of β-lactam antibiotics in milk and feed samples. Trends Anal Chem 28(6):729–744CrossRefGoogle Scholar
  21. 21.
    Bailon-Perez ML, Garcia-Campana AM, Cruces-Blanco C, Iruela MD (2008) Trace determination of P-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis. J Chromatogr A 1185(2):273–280CrossRefGoogle Scholar
  22. 22.
    Santos SM, Henriques M, Duarte AC, Esteves VI (2007) Development and application of a capillary electrophoresis based method for the simultaneous screening of six antibiotics in spiked milk samples. Talanta 71(2):731–737CrossRefGoogle Scholar
  23. 23.
    Juan-Garcia A, Font G, Pico Y (2007) Simultaneous determination of different classes of antibiotics in fish and livestock by CE–MS. Electrophoresis 28(22):4180–4191CrossRefGoogle Scholar
  24. 24.
    Urraca JL, Moreno-Bondi MC, Orellana G, Sellergren B, Hall AJ (2007) Molecularly imprinted polymers as antibody mimics in automated on-line fluorescent competitive assays. Anal Chem 79(13):4915–4923CrossRefGoogle Scholar
  25. 25.
    Wan FW, Yu JH, Dai P, Ge SG (2010) Molecular imprinting-chemiluminescent sensor for the determination of amoxicillin. Anal Lett 43(6):1033–1045CrossRefGoogle Scholar
  26. 26.
    Zhang XP, Chen LG, Xu Y, Wang H, Zeng QL, Zhao Q, Ren NQ, Ding L (2010) Determination of beta-lactam antibiotics in milk based on magnetic molecularly imprinted polymer extraction coupled with liquid chromatography–tandem mass spectrometry. J Chromatogr B 878(32):3421–3426CrossRefGoogle Scholar
  27. 27.
    Diserens JM, Beck Henzelin A, Le Breton MH, Savoy Perroud MC (2010) Current situation and compilation of commercially available screening methods for the detection of inhibitors/antibiotic residues in milk. Bulletin of the International Dairy Federation, vol 442. Int Dairy FedGoogle Scholar
  28. 28.
    Messer JW, Leslie JE, Houghtby GA, Peeler JT, Barnett JE (1982) Bacillus stearothermophilus disc assay for detection of inhibitors in milk: collaborative study. J Assoc Off Anal Chem 65:1208–1214, Copyright (C) 2011 U.S. National Library of MedicineGoogle Scholar
  29. 29.
    Lamar J, Petz M (2007) Development of a receptor-based microplate assay for the detection of beta-lactam antibiotics in different food matrices. Anal Chim Acta 586(1–2):296–303CrossRefGoogle Scholar
  30. 30.
    Broughton A, Strong JE (1976) Radioimmunoassay of antibiotics and chemotherapeutic agents. Clin Chem 22(6):726–732Google Scholar
  31. 31.
    Benito-Pena E, Moreno-Bondi MC, Orellana G, Maquieira A, van Amerongen A (2005) Development of a novel and automated fluorescent immunoassay for the analysis of β-lactam antibiotics. J Agric Food Chem 53(17):6635–6642CrossRefGoogle Scholar
  32. 32.
    Cliquet P, Cox E, Van Dorpe C, Schacht E, Goddeeris BM (2001) Generation of class-selective monoclonal antibodies against the penicillin group. J Agric Food Chem 49(7):3349–3355CrossRefGoogle Scholar
  33. 33.
    Samsonova Z, Shchelokova O, Ivanova N, Rubtsova M, Egorov A (2005) Enzyme-linked immunosorbent assay of ampicillin in milk. Appl Biochem Microbiol 41(6):589–595CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Jiang Y, Wang S (2010) Development of an enzyme-linked immunosorbent assay to detect benzylpenicilloic acid, a degradation product of penicillin G in adulterated milk. J Agric Food Chem 58(14):8171–8175CrossRefGoogle Scholar
  35. 35.
    Kress C, Schneider E, Usleber E (2011) Determination of penicillin and benzylpenicilloic acid in goat milk by enzyme immunoassays. Small Ruminant Res 96(2–3):160–164CrossRefGoogle Scholar
  36. 36.
    Grubelnik A, Padeste C, Tiefenauer L (2001) Highly sensitive enzyme immunoassays for the detection of beta-lactam antibiotics. Food Agric Immunol 13(3):161–169CrossRefGoogle Scholar
  37. 37.
    Strasser A, Usleber E, Schneider E, Dietrich R, Burk C, Martlbauer E (2003) Improved enzyme immunoassay for group-specific determination of penicillins in milk. Food Agric Immunol 15(2):135–143CrossRefGoogle Scholar
  38. 38.
    Fitzgerald SP, O’Loan N, McConnell RI, Benchikh EO, Kane NE (2007) Stable competitive enzyme-linked immunosorbent assay kit for rapid measurement of 11 active beta-lactams in milk, tissue, urine, and serum. J AOAC Int 90(1):334–342Google Scholar
  39. 39.
    Duan H, Liu ZF, Liu SP, Yi A (2008) Resonance Rayleigh scattering, second-order scattering and frequency doubling scattering methods for the indirect determination of penicillin antibiotics based on the formation of Fe(3)Fe(CN)(6) (2) nanoparticles. Talanta 75(5):1253–1259CrossRefGoogle Scholar
  40. 40.
    Khalilzadeh MA, Gholami F, Karimi-Maleh H (2009) Electrocatalytic determination of ampicillin using carbon-paste electrode modified with ferrocendicarboxylic acid. Anal Lett 42(3):584–599CrossRefGoogle Scholar
  41. 41.
    Hu YF, Li JX, Zhang ZH, Zhang HB, Luo LJ, Yao SZ (2011) Imprinted sol–gel electrochemical sensor for the determination of benzylpenicillin based on Fe(3)O(4)@SiO(2)/multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode. Anal Chim Acta 698(1–2):61–68CrossRefGoogle Scholar
  42. 42.
    Setford SJ, Van Es RM, Blankwater YJ, Kröger S (1999) Receptor binding protein amperometric affinity sensor for rapid β-lactam quantification in milk. Anal Chim Acta 398(1):13–22CrossRefGoogle Scholar
  43. 43.
    Gustavsson E, Bjurling P, Sternesjö Å (2002) Biosensor analysis of penicillin G in milk based on the inhibition of carboxypeptidase activity. Anal Chim Acta 468(1):153–159CrossRefGoogle Scholar
  44. 44.
    Cliquet P, Goddeeris BM, Bonroy K, Cox E (2005) Penicillin-specific antibodies: monoclonals versus polyclonals in ELISA and in an optical biosensor. Food Agric Immunol 16(2):101–115CrossRefGoogle Scholar
  45. 45.
    Gaudin V, Fontaine J, Maris P (2001) Screening of penicillin residues in milk by a surface plasmon resonance-based biosensor assay: comparison of chemical and enzymatic sample pre-treatment. Anal Chim Acta 436(2):191–198CrossRefGoogle Scholar
  46. 46.
    Adrian J, Pasche S, Voirin G, Pinacho DG, Font H, Sánchez-Baeza F, Marco M-P, Diserens J-M, Granier B (2009) Wavelength-interrogated optical biosensor for multi-analyte screening of sulfonamide, fluoroquinolone, β-lactam and tetracycline antibiotics in milk. Trends Anal Chem 28(6):769–777CrossRefGoogle Scholar
  47. 47.
    Jiang Z, Li Y, Liang A, Qin A (2008) A sensitive and selective immuno-nanogold resonance-scattering spectral method for the determination of trace penicillin G. Luminescence 23(3):157–162CrossRefGoogle Scholar
  48. 48.
    Odonnance du DFI du 26 juin 1995 sur les substances étrangères et les composants dans les denrées alimentaires, 817.021.23 (1995) Confederation SuisseGoogle Scholar
  49. 49.
    Food and Drugs. Chapter 1-Food and drug administration. Subchapter E – Animal drugs, feeds and related products part 556 (2011) US Food Drug AdmGoogle Scholar
  50. 50.
    Veterinary Drugs Directorate. Administrative Maximum Residue Limits (AMRLs) and Maximum Residue Limits (MRLs) set by Canada (2011) Health CanadaGoogle Scholar
  51. 51.
    The Japanese positive list system for agricultural chemical residues in foods, Maximum Residue Limits (MRLs) of agricultural chemicals in foods (2006) Jpn Food Chem Res FoundGoogle Scholar
  52. 52.
    Regulations Governing the Maximum Limits for Veterinary Medicine and Stock Remedy Residues that may be present in foodstuffs (2006) South African Government. Department of HealthGoogle Scholar
  53. 53.
    New Zealand (Maximum Residue Limits of Agricultural Compounds) Food Standards 2005 (No. 2) (2011) New Zealand Food Safety AuthorityGoogle Scholar
  54. 54.
    Veterinary Drug Residue Limits in Foods. Taiwan Department of HealthGoogle Scholar
  55. 55.
    Sierra D, Contreras A, Sánchez A, Luengo C, Corrales JC, Morales CT, de la Fe C, Guirao I, Gonzalo C (2009) Short communication: detection limits of non-β-lactam antibiotics in goat’s milk by microbiological residues screening tests. Journal of Dairy Science 92(9):4200–4206CrossRefGoogle Scholar
  56. 56.
    Andrew SM, Frobish A, Paape MJ, Maturin LJ (1997) Evaluation of selected antibiotic residue screening tests for milk from individual cows and examination of factors that affect the probability of false-positive outcomes. J Dairy Sci 80(11):3050–3057CrossRefGoogle Scholar
  57. 57.
    Carlsson, Björck L, Johnsson G (1992) The use of different microbial assays in combination with the Charm II test in the detection of antibiotic residues in herd milk. Int Dairy J 2(2):109–119CrossRefGoogle Scholar
  58. 58.
    Stead SL, Ashwin H, Richmond SF, Sharman M, Langeveld PC, Barendse JP, Stark J, Keely BJ (2008) Evaluation and validation according to international standards of the Delvotest® SP-NT screening assay for antimicrobial drugs in milk. Int Dairy J 18(1):3–11CrossRefGoogle Scholar
  59. 59.
    Okerman L, van Hoof J, Debeuckelaere W (1998) Evaluation of the European four-plate test as a tool for screening antibiotic residues in meat samples from retail outlets. J AOAC Int 81(1):51–56Google Scholar
  60. 60.
    Currie D, Lynas L, Kennedy DG, McCaughey WJ (1998) Evaluation of a modified EC Four Plate Method to detect antimicrobial drugs. Food Addit Contam 15(6):651–660CrossRefGoogle Scholar
  61. 61.
    USDA (1979) A self instructional guide: performing the SWAB test (On Premises) for antibiotic residues. United States Department of Agriculture, Washington, DCGoogle Scholar
  62. 62.
    Koenen-Dierick K, De Beer JO (1998) Optimization of an antibiotic residue screening test, based on inhibition of Bacillus subtilis BGA, with experimental design. Food Addit Contam 15(5):528–534CrossRefGoogle Scholar
  63. 63.
    Nouws JFM, Broex NJG, Den Hartog JMP, Driessens F (1988) The New Dutch Kidney Test. Arch Lebensmittelhyg 39:133–156Google Scholar
  64. 64.
    USDA (1994) Fast Antimicrobial Screen Test for detection of antibiotic and sulfonamide residues in livestock kidney tissue. A self-instructional guide. United States Department of Agriculture, Washington, DCGoogle Scholar
  65. 65.
    Abouzied M, Sarzynski M, Walsh A, Wood H, Mozola M (2009) Validation study of a receptor-based lateral flow assay for detection of beta-lactam antibiotics in milk. J AOAC Int 92(3):959–974Google Scholar
  66. 66.
    Žvirdauskienė R, Šalomskienė J (2007) An evaluation of different microbial and rapid tests for determining inhibitors in milk. Food Control 18(5):541–547CrossRefGoogle Scholar
  67. 67.
    Bacigalupo MA, Meroni G, Secundo F, Lelli R (2008) Time-resolved fluoroimmunoassay for quantitative determination of ampicillin in cow milk samples with different fat contents. Talanta 77(1):126–130CrossRefGoogle Scholar
  68. 68.
    Cliquet P, Goddeeris BM, Okerman L, Cox E (2007) Production of penicillin-specific polyclonal antibodies for a group-specific screening ELISA. Food Agric Immunol 18(3–4):237–252CrossRefGoogle Scholar
  69. 69.
    Dietrich R, Usleber E, Martlbauer E (1998) The potential of monoclonal antibodies against ampicillin for the preparation of a multi-immunoaffinity chromatography for penicillins[dagger]. Analyst 123(12)Google Scholar
  70. 70.
    Kloth K, Rye-Johnsen M, Didier A, Dietrich R, Martlbauer E, Niessner R, Seidel M (2009) A regenerable immunochip for the rapid determination of 13 different antibiotics in raw milk. Analyst 134(7):1433–1439CrossRefGoogle Scholar
  71. 71.
    Gustavsson E, Bjurling P, Degelaen J, Sternesjö A (2002) Analysis of beta-lactam antibiotics using a microbial receptor protein-based biosensor assay. Food Agric Immunol 14(2):121–131CrossRefGoogle Scholar
  72. 72.
    Sternesjö A, Gustavsson E Biosensor analysis of beta-lactams in milk using the carboxypeptidase activity of a bacterial penicillin binding protein. J AOAC Int 89(3):832–837Google Scholar
  73. 73.
    Cacciatore G, Petz M, Rachid S, Hakenbeck R, Bergwerff AA (2004) Development of an optical biosensor assay for detection of β-lactam antibiotics in milk using the penicillin-binding protein 2x*. Anal Chim Acta 520(1–2):105–115CrossRefGoogle Scholar
  74. 74.
    Knecht BG, Strasser A, Dietrich R, Märtlbauer E, Niessner R, Weller MG (2004) Automated microarray system for the simultaneous detection of antibiotics in milk. Anal Chem 76(3):646–654CrossRefGoogle Scholar
  75. 75.
    Dawan S, Kanatharana P, Wongkittisuksa B, Limbut W, Numnuam A, Limsakul C, Thavarungkul P (2011) Label-free capacitive immunosensors for ultra-trace detection based on the increase of immobilized antibodies on silver nanoparticles. Anal Chim Acta 699(2):232–241CrossRefGoogle Scholar
  76. 76.
    Poghossian A, Schöning MJ, Schroth P, Simonis A, Lüth H (2001) An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sens Actuators B 76(1–3):519–526CrossRefGoogle Scholar
  77. 77.
    Poghossian A, Yoshinobu T, Simonis A, Ecken H, Lüth H, Schöning MJ (2001) Penicillin detection by means of field–effect based sensors: EnFET, capacitive EIS sensor or LAPS? Sens Actuators B 78(1–3):237–242CrossRefGoogle Scholar
  78. 78.
    Stred’anský M, Pizzariello A, Stred’anská S, Miertuš S (2000) Amperometric pH-sensing biosensors for urea, penicillin, and oxalacetate. Anal Chim Acta 415(1–2):151–157CrossRefGoogle Scholar
  79. 79.
    Ferrini AM, Mannoni V, Carpico G, Pellegrini GE (2008) Detection and identification of beta-lactam residues in milk using a hybrid biosensor. J Agric Food Chem 56(3):784–788CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ruth Babington
    • 1
    • 2
  • Sonia Matas
    • 1
    • 2
  • M.-Pilar Marco
    • 1
    • 2
  • Roger Galve
    • 1
    • 2
  1. 1.Applied Molecular Receptors Group (AMRg)IQAC-CSICBarcelonaSpain
  2. 2.CIBER de Bioingeniería, Biomateriales y NanomedicinaBarcelonaSpain

Personalised recommendations