Analytical and Bioanalytical Chemistry

, Volume 403, Issue 5, pp 1405–1414 | Cite as

Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging

  • Gianluca Pastorelli
  • Tanja Trafela
  • Phillip F. Taday
  • Alessia Portieri
  • David Lowe
  • Kaori Fukunaga
  • Matija Strlič
Original Paper


Terahertz (THz) time-domain spectroscopy and 3D THz pulsed imaging have been explored with regard to polymer materials, both commodity and historic polymers. A systematic spectroscopic study of a wide range of different polymer materials showed significant differences in their spectra. Polyolefins and polystyrenes generally exhibit lower absorption than other examined polymers, various cellulose derivates, poly(vinyl chloride), poly(methyl methacrylate), polyamide, hard rubber and phenol formaldehyde resin, the last of these exhibiting the most intense absorption over the entire range, 0.15–4.2 THz. It was also examined how the presence of plasticisers in poly(vinyl chloride), the presence of fillers in polypropylene, and the degree of branching in polyethylene and polystyrene affect the spectra; inorganic fillers in polypropylene affected the absorption most. With 3D THz pulsed imaging, features in polymer objects were explored, appearing either as integral parts of the material (coatings and pores in foams) or as a consequence of physical deterioration (cracks, delamination). All of these features of various complexities can be successfully imaged in 3D. Terahertz technology is thus shown to have significant potential for both chemical and structural characterisation of polymers, which will be of interest to heritage science, but also to the polymer industry and development of analytical technologies in general.


Terahertz time-domain spectroscopy Terahertz pulsed imaging Polymers Degradation Heritage science 



The authors gratefully acknowledge funding from the European Community 7th Framework Programme under the grant agreement no. 212218 (Popart - Preservation of plastic artefacts in museum collections), the Slovenian Research Agency (Programme P1-0153), and Ad futura, Slovenian Human Resources and Scholarship Fund.

Supplementary material

216_2012_5931_MOESM1_ESM.pdf (499 kb)
ESM 1 (PDF 499 kb)


  1. 1.
    Wallace WE, Fischer DA, Efimenko K, Wu W, Genzer J (2001) Polymer chain relaxation: surface outpaces bulk. Macromolecules 34:5081–5082CrossRefGoogle Scholar
  2. 2.
    Marcilla A, García S, García-Quesada JC (2004) Study of the migration of PVC plasticizers. J Anal Appl Pyrol 71(2):457–463CrossRefGoogle Scholar
  3. 3.
    Lewis CW (1972) Mechanism of the PVC dechlorination reaction. J Polym Sci Polym Phys 10(2):377–379Google Scholar
  4. 4.
    Chaupart N, Serpeb G, Verdub J (1998) Molecular weight distribution and mass changes during polyamide hydrolysis. Polymer 39(6–7):1375–1380CrossRefGoogle Scholar
  5. 5.
    Grassie N, Scott G (1985) Polymer degradation and stabilisation. Cambridge University Press, CambridgeGoogle Scholar
  6. 6.
    Van Oosten T, Shashoua Y, Waentig F, Köln F (2002) Plastics in art: history, technology, preservation. Siegl, MunchenGoogle Scholar
  7. 7.
    Shashoua Y (2008) Conservation of plastics: materials science, degradation and preservation. Elsevier/Butterworth-Heinemann, OxfordGoogle Scholar
  8. 8.
    Morales Muñoz C (2010) Surface modification of plasticized PVC by dry cleaning methods: consequences for artworks. Appl Surf Sci 256(11):3567–3572CrossRefGoogle Scholar
  9. 9.
    National Film Preservation Foundation (2004) The film preservation guide: the basics for archives, libraries, and museums. National Film Preservation Foundation, San FranciscoGoogle Scholar
  10. 10.
    Crompton TR (2009) Introduction to polymer analysis. iSmithers Rapra, ShrewsburyGoogle Scholar
  11. 11.
    Wietzke S, Rutz F, Jördens C, Krumbholz N, Vieweg N, Jansen C, Wilk R, Koch M (2008) Applications of terahertz spectroscopy in the plastics industry. In: Zhang C, Zhang XC (eds) Terahertz photonics, proceedings of SPIE 6840. SPIE, BellinghamGoogle Scholar
  12. 12.
    Mittleman DM, Gupta M, Neelamani R, Baraniuk RG, Rudd JV, Koch M (1999) Recent advances in terahertz imaging. Appl Phys B Lasers Opt 68(6):1085–1094CrossRefGoogle Scholar
  13. 13.
    Davies AG, Linfield EH, Johnston MB (2002) The development of terahertz sources and their applications. Phys Med Biol 47:3679–3689CrossRefGoogle Scholar
  14. 14.
    Markelz AG, Roitberg A, Heilweil EJ (2000) Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem Phys Lett 320(1–2):42–48CrossRefGoogle Scholar
  15. 15.
    Ding T, Li R, Zeitler JA, Huber TL, Gladden LF, Middelberg APJ, Falconer RJ (2010) Terahertz and far-infrared spectroscopy of alanine-rich peptides with variable ellipticity. Opt Express 18:27431–27444CrossRefGoogle Scholar
  16. 16.
    Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T, Koch M (2010) Terahertz imaging: applications and perspectives. Appl Optics 49:E48–E57CrossRefGoogle Scholar
  17. 17.
    Jördens C, Wietzke S, Scheller M, Koch M (2010) Investigation of the water absorption in polyamide and wood plastic composite by terahertz time-domain spectroscopy. Polym Test 29:209–215CrossRefGoogle Scholar
  18. 18.
    Fukunaga K (2009) Innovative terahertz spectroscopy and imaging technique for art conservation science. E-Conserv Mag 10:30–42Google Scholar
  19. 19.
    Trafela T, Mizuno M, Fukunaga K, Strlic M (2010) THz spectroscopy and chemometrics for quantitative determination of chemical properties and dating of historic paper. Proceedings of 35th international conference on infrared, millimeter and terahertz waves (IRMMW-THz 2010), Rome, September 5–10, 2010. IEEE, New YorkGoogle Scholar
  20. 20.
    Herrmann M, Tani M, Sakai K (2000) Display modes in time-resolved terahertz imaging. Jpn J Appl Phys 39:6254CrossRefGoogle Scholar
  21. 21.
    Zhang XC (2004) Three-dimensional terahertz wave imaging. Phil Trans R Soc Lond A 362(1815):283–299CrossRefGoogle Scholar
  22. 22.
    Shen YC, Taday PF, Newnham DA, Kemp MC, Pepper M (2005) 3D chemical mapping using terahertz pulsed imaging. In: Hwu RJ, Linden KJ (eds) Terahertz and gigahertz electronics and photonics IV, proceedings of SPIE 5727. SPIE, BellinghamGoogle Scholar
  23. 23.
    Labaune J, Jackson JB, Pagès-Camagna S, Duling IN, Menu M, Mourou GA (2010) Papyrus imaging with terahertz time domain spectroscopy. Appl Phys A Mater Sci Process 100(3):607–612CrossRefGoogle Scholar
  24. 24.
    Arnone DD, Ciesla CM, Corchia A, Egusa S, Pepper M, Chamberlain JM, Bezant C, Linfield EH, Clothier R, Khammo N (1999) Application of terahertz (THz) technology to medical imaging. In: Terahertz spectroscopy and applications II, proceedings of SPIE 3828(1). SPIE, BellinghamGoogle Scholar
  25. 25.
    Anastasi RF, Madaras EI (2005) Application of Hilbert-Huang transform for improved defect detection in terahertz NDE of shuttle tiles. In: Nondestructive evaluation and health monitoring of aerospace materials, composites, and civil infrastructure IV, proceedings of SPIE 5767. SPIE, Bellingham, p 356–362Google Scholar
  26. 26.
    Pradarutti B, Riehmann S, Notni G, Tünnermann A (2007) Terahertz imaging for styrofoam inspection. In: Anwar M (ed) Terahertz physics, devices, and systems II, proceedings of SPIE 6772. SPIE, BellinghamGoogle Scholar
  27. 27.
    Mather ML, Morgan SP, White LJ, Tai H, Kockenberger W, Howdle SM, Shakesheff KM, Crowe JA (2008) Image-based characterization of foamed polymeric tissue scaffolds. Biomed Mater 3(1):015011CrossRefGoogle Scholar
  28. 28.
    Rigon L, Vallazza E, Arfelli F, Longo R, Dreossi D, Bergamaschi A, Schmidt B, Chen R, Assunta Cova M, Perabò R, Fioravanti M, Mancini L, Menk RH, Sodini N, Tromba G, Zanini F (2010) Synchrotron-radiation microtomography for the non-destructive structural evaluation of bowed stringed instruments. e-Pres Sci 7:71–77Google Scholar
  29. 29.
    Cippo EP, Borella A, Gorini G, Kockelmann W, Moxon M, Postma H, Rhodes NJ, Schillebeeckx P, Schoonenveld EM, Tardocchi M, Dusz K, Hajnal Z, Biro K, Porcinai S, Andreani C, Festa G (2011) Imaging of cultural heritage objects using neutron resonances. J Anal Atom Spectr 26(5):992–999CrossRefGoogle Scholar
  30. 30.
    Shen YC, Taday PF (2008) Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet. IEEE J Quantum Elect 14(2):407–415CrossRefGoogle Scholar
  31. 31.
    Caumes JP, Younus A, Salort S, Chassagne B, Recur B, Ziéglé A, Dautant A, Abraham E (2011) Terahertz tomographic imaging of XVIIIth Dynasty Egyptian sealed pottery. Appl Opt 50:3604–3608CrossRefGoogle Scholar
  32. 32.
    Labaune J, Jackson JB, Fukunaga K, White J, d’Alessandro L, Whyte A, Menu M, Mourou G (2011) Investigation of Terra Cotta artefacts with terahertz. Appl Phys A Mater Sci Process 105(1):5–9CrossRefGoogle Scholar
  33. 33.
    Ho L, Muller R, Gordon KC, Kleinebudde P, Pepper M, Rades T, Shen YC, Taday PF, Zeitler JA (2009) Monitoring the film coating unit operation and predicting drug dissolution using terahertz pulsed imaging. J Pharm Sci 98:4866–4876CrossRefGoogle Scholar
  34. 34.
    Alexandrov BS, Rasmussen KØ, Bishop AR, Usheva A, Alexandrov LB, Chong S, Dagon Y, Booshehri LG, Mielke CH, Phipps ML, Martinez JS, Chen HT, Rodriguez G (2011) Non-thermal effects of terahertz radiation on gene expression in mouse stem cells. Biomedical Optics Express 2(9):2679–2689CrossRefGoogle Scholar
  35. 35.
    Fukunaga K, Picollo M (2010) Terahertz spectroscopy applied to the analysis of artists’ materials. Appl Phys A Mater Sci Process 100(3):591–597CrossRefGoogle Scholar
  36. 36.
    Puls J, Wilson SA, Holter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19:152–165CrossRefGoogle Scholar
  37. 37.
    Edwards HGM, Johnson AF, Lewis IR, Turner P (1993) Raman spectroscopic studies of ‘Pedigree Doll disease’. Polym Degrad Stabil 41(3):257–264CrossRefGoogle Scholar
  38. 38.
    Quye A, Williamson C (1999) Plastics, collecting and conserving. National Museums of Scotland, EdinburghGoogle Scholar
  39. 39.
    Reilly JM (1993) IPI storage guide for acetate film. Image Permanence Institute, RochesterGoogle Scholar
  40. 40.
    Quye A, Littlejohn D, Pethrick RA, Stewart RA (2011) Accelerated ageing to study the degradation of cellulose nitrate museum artefacts. Polym Degrad Stabil 96(10):1934–1939CrossRefGoogle Scholar
  41. 41.
    Vilar WD (2002) Chemistry and technology of polyurethanes, 3rd edn. Vilar Consultoria Técnica, Rio de JaneiroGoogle Scholar
  42. 42.
    Spencer J, Gao Z, Moore T, Buhse LF, Taday PF, Newnham DA, Shen YC, Portieri A, Husain A (2008) Delayed release tablet dissolution related to coating thickness by terahertz pulsed image mapping. J Pharm Sci 97(4):1543–1550CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Gianluca Pastorelli
    • 1
  • Tanja Trafela
    • 2
  • Phillip F. Taday
    • 3
  • Alessia Portieri
    • 3
  • David Lowe
    • 3
  • Kaori Fukunaga
    • 4
  • Matija Strlič
    • 1
  1. 1.Centre for Sustainable Heritage, Bartlett School of Graduate StudiesUniversity College LondonLondonUK
  2. 2.University of LjubljanaFaculty of Chemistry and Chemical TechnologyLjubljanaSlovenia
  3. 3.TeraView LtdCambridgeUK
  4. 4.Applied Electromagnetic Research CenterNational Institute of Information and Communications TechnologyKoganeiJapan

Personalised recommendations