Advertisement

Analytical and Bioanalytical Chemistry

, Volume 403, Issue 8, pp 2127–2143 | Cite as

Single-molecule emulsion PCR in microfluidic droplets

  • Zhi Zhu
  • Gareth Jenkins
  • Wenhua Zhang
  • Mingxia Zhang
  • Zhichao Guan
  • Chaoyong James Yang
Review

Abstract

The application of microfluidic droplet PCR for single-molecule amplification and analysis has recently been extensively studied. Microfluidic droplet technology has the advantages of compartmentalizing reactions into discrete volumes, performing highly parallel reactions in monodisperse droplets, reducing cross-contamination between droplets, eliminating PCR bias and nonspecific amplification, as well as enabling fast amplification with rapid thermocycling. Here, we have reviewed the important technical breakthroughs of microfluidic droplet PCR in the past five years and their applications to single-molecule amplification and analysis, such as high-throughput screening, next generation DNA sequencing, and quantitative detection of rare mutations. Although the utilization of microfluidic droplet single-molecule PCR is still in the early stages, its great potential has already been demonstrated and will provide novel solutions to today’s biomedical engineering challenges in single-molecule amplification and analysis.

Keywords

Single-molecule amplification Emulsion PCR Microfluidic droplets High-throughput screening Next generation DNA sequencing Rare mutation detection 

Notes

Acknowledgment

This work is supported by the National Basic Research Program of China (Grant 2010CB732402), National Scientific Foundation of China (Grants 21075104 and 20805038), and the Natural Science Foundation of Fujian Province for Distinguished Young Scholars (Grant 2010 J06004)

References

  1. 1.
    Xie XS, Yu J, Yang WY (2006) Science 312:228–230CrossRefGoogle Scholar
  2. 2.
    Sims CE, Allbritton NL (2007) Lab Chip 7:423–440CrossRefGoogle Scholar
  3. 3.
    Li GW, Xie XS (2011) Nature 475:308–315CrossRefGoogle Scholar
  4. 4.
    Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Nature 374:555–559CrossRefGoogle Scholar
  5. 5.
    Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Science 282:902–907CrossRefGoogle Scholar
  6. 6.
    Weiss S (1999) Science 283:1676–1683CrossRefGoogle Scholar
  7. 7.
    Check E (2005) Nature 437:1084–1086CrossRefGoogle Scholar
  8. 8.
    Raser JM, O'Shea EK (2005) Science 309:2010–2013CrossRefGoogle Scholar
  9. 9.
    Misteli T, Soutoglou E (2009) Nat Rev Mol Cell Biol 10:243–254CrossRefGoogle Scholar
  10. 10.
    Stratton MR, Campbell PJ, Futreal PA (2009) Nature 458:719–724CrossRefGoogle Scholar
  11. 11.
    Burkhart DL, Sage J (2008) Nat Rev Cancer 8:671–682CrossRefGoogle Scholar
  12. 12.
    Jeffreys AJ, Wilson V, Neumann R, Keyte J (1988) Nucleic Acids Res 16:10953–10971CrossRefGoogle Scholar
  13. 13.
    Jeffreys AJ, Neumann R, Wilson V (1990) Cell 60:473–485CrossRefGoogle Scholar
  14. 14.
    Li HH, Gyllensten UB, Cui XF, Saiki RK, Erlich HA, Arnheim N (1988) Nature 335:414–417CrossRefGoogle Scholar
  15. 15.
    Ruano G, Kidd KK, Stephens JC (1990) Proc Natl Acad Sci U S A 87:6296–6300CrossRefGoogle Scholar
  16. 16.
    Song H, Chen DL, Ismagilov RF (2006) Angew Chem Int Ed Engl 45:7336–7356CrossRefGoogle Scholar
  17. 17.
    Dittrich PS, Manz A (2006) Nat Rev Drug Discovery 5:210–218CrossRefGoogle Scholar
  18. 18.
    Price AK, Culbertson CT (2007) Anal Chem 79:2614–2621CrossRefGoogle Scholar
  19. 19.
    Chiu DT, Lorenz RM (2009) Acc Chem Res 42:649–658CrossRefGoogle Scholar
  20. 20.
    Lindstrom S, Andersson-Svahn H (2010) Lab Chip 10:3363–3372CrossRefGoogle Scholar
  21. 21.
    Teh SY, Lin R, Hung LH, Lee AP (2008) Lab Chip 8:198–220CrossRefGoogle Scholar
  22. 22.
    Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, Demello AJ (2008) Lab Chip 8:1244–1254CrossRefGoogle Scholar
  23. 23.
    Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Angew Chem Int Edit 49:5846–5868Google Scholar
  24. 24.
    Baroud CN, Gallaire F, Dangla R (2010) Lab Chip 10:2032–2045CrossRefGoogle Scholar
  25. 25.
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Science 230:1350–1354CrossRefGoogle Scholar
  26. 26.
    Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Cold Spring Harbor Symp Quant Biol 51:263–273CrossRefGoogle Scholar
  27. 27.
    Zhang C, Da X (2010) Chem Rev (Washington, DC, U S) 110:4910–4947CrossRefGoogle Scholar
  28. 28.
    Kemp DJ, Smith DB, Foote SJ, Samaras N, Peterson MG (1989) Proc Natl Acad Sci U S A 86:2423–2427CrossRefGoogle Scholar
  29. 29.
    Porterjordan K, Rosenberg EI, Keiser JF, Gross JD, Ross AM, Nasim S, Garrett CT (1990) J Med Virol 30:85–91CrossRefGoogle Scholar
  30. 30.
    Kalinina O, Lebedeva I, Brown J, Silver J (1997) Nucleic Acids Res 25:1999–2004CrossRefGoogle Scholar
  31. 31.
    Lagally ET, Medintz I, Mathies RA (2001) Anal Chem 73:565–570CrossRefGoogle Scholar
  32. 32.
    Nakano M, Komatsu J, Matsuura S, Takashima K, Katsura S, Mizuno A (2003) J Biotechnol 102:117–124CrossRefGoogle Scholar
  33. 33.
    Shao KK, Ding WF, Wang F, Li HQ, Ma D, Wang HM (2011) PLoS One 6Google Scholar
  34. 34.
    Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B (2003) Proc Natl Acad Sci U S A 100:8817–8822CrossRefGoogle Scholar
  35. 35.
    Diehl F, Li M, He YP, Kinzler KW, Vogelstein B, Dressman D (2006) Nat Methods 3:551–559CrossRefGoogle Scholar
  36. 36.
    Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Science 309:1728–1732CrossRefGoogle Scholar
  37. 37.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Nature 437:376–380Google Scholar
  38. 38.
    Kumaresan P, Yang CJ, Cronier SA, Blazej RG, Mathies RA (2008) Anal Chem 80:3522–3529CrossRefGoogle Scholar
  39. 39.
    Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Phys Rev Lett 86:4163–4166CrossRefGoogle Scholar
  40. 40.
    Nisisako T, Torii T, Higuchi T (2002) Lab Chip 2:24–26CrossRefGoogle Scholar
  41. 41.
    Zagnoni M, Anderson J, Cooper JM (2010) Langmuir 26:9416–9422CrossRefGoogle Scholar
  42. 42.
    Gupta A, Kumar R (2010) Microfluid Nanofluid 8:799–812CrossRefGoogle Scholar
  43. 43.
    van Steijn V, Kleijn CR, Kreutzer MT (2010) Lab Chip 10:2513–2518CrossRefGoogle Scholar
  44. 44.
    Schneider T, Burnham DR, VanOrden J, Chiu DT (2011) Lab Chip 11:2055–2059CrossRefGoogle Scholar
  45. 45.
    Sivasamy J, Wong TN, Nguyen NT, Kao LTH (2011) Microfluid Nanofluid 11:1–10CrossRefGoogle Scholar
  46. 46.
    Liu HH, Zhang YH (2009) J Appl Phys 106Google Scholar
  47. 47.
    Anna SL, Bontoux N, Stone HA (2003) Appl Phys Lett 82:364–366CrossRefGoogle Scholar
  48. 48.
    Ward T, Faivre M, Abkarian M, Stone HA (2005) Electrophoresis 26:3716–3724CrossRefGoogle Scholar
  49. 49.
    Nie ZH, Seo MS, Xu SQ, Lewis PC, Mok M, Kumacheva E, Whitesides GM, Garstecki P, Stone HA (2008) Microfluid Nanofluid 5:585–594CrossRefGoogle Scholar
  50. 50.
    Yobas L, Martens S, Ong WL, Ranganathan N (2006) Lab Chip 6:1073–1079CrossRefGoogle Scholar
  51. 51.
    Peng L, Yang M, Guo SS, Liu W, Zhao XZ (2011) Biomed Microdevices 13:559–564CrossRefGoogle Scholar
  52. 52.
    Takeuchi S, Garstecki P, Weibel DB, Whitesides GM (2005) Adv Mater (Weinheim, Ger) 17:1067CrossRefGoogle Scholar
  53. 53.
    Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Science 308:537–541CrossRefGoogle Scholar
  54. 54.
    Tan YC, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Lab Chip 4:292–298CrossRefGoogle Scholar
  55. 55.
    Link DR, Anna SL, Weitz DA, Stone HA (2004) Phys Rev Lett 92:054503CrossRefGoogle Scholar
  56. 56.
    Hatch AC, Fisher JS, Tovar AR, Hsieh AT, Lin R, Pentoney SL, Yang DL, Lee AP (2011) Lab Chip 11:3838–3845CrossRefGoogle Scholar
  57. 57.
    Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Angew Chem Int Ed Engl 45:2556–2560CrossRefGoogle Scholar
  58. 58.
    Cho SK, Moon HJ, Kim CJ (2003) J Microelectromech S 12:70–80CrossRefGoogle Scholar
  59. 59.
    Song H, Tice JD, Ismagilov RF (2003) Angew Chem Int Edit 42:768–772CrossRefGoogle Scholar
  60. 60.
    Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP (2006) Lab Chip 6:174–178CrossRefGoogle Scholar
  61. 61.
    Kohler JM, Henkel T, Grodrian A, Kirner T, Roth M, Martin K, Metze J (2004) Chem Eng J (Lausanne) 101:201–216Google Scholar
  62. 62.
    Fidalgo LM, Abell C, Huck WTS (2007) Lab Chip 7:984–986CrossRefGoogle Scholar
  63. 63.
    Mazutis L, Araghi AF, Miller OJ, Baret JC, Frenz L, Janoshazi A, Taly V, Miller BJ, Hutchison JB, Link D, Griffiths AD, Ryckelynck M (2009) Anal Chem 81:4813–4821CrossRefGoogle Scholar
  64. 64.
    Tresset G, Takeuchi S (2005) Anal Chem 77:2795–2801CrossRefGoogle Scholar
  65. 65.
    Tan WH, Takeuchi S (2006) Lab Chip 6:757–763CrossRefGoogle Scholar
  66. 66.
    Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Science 295:647–651CrossRefGoogle Scholar
  67. 67.
    Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF (2004) Philos T Roy Soc A 362:1087–1104CrossRefGoogle Scholar
  68. 68.
    Liau A, Karnik R, Majumdar A, Cate JHD (2005) Anal Chem 77:7618–7625CrossRefGoogle Scholar
  69. 69.
    Cabral JT, Hudson SD (2006) Lab Chip 6:427–436CrossRefGoogle Scholar
  70. 70.
    Paik P, Pamula VK, Pollack MG, Fair RB (2003) Lab Chip 3:28–33CrossRefGoogle Scholar
  71. 71.
    Chatterjee D, Hetayothin B, Wheeler AR, King DJ, Garrell RL (2006) Lab Chip 6:199–206CrossRefGoogle Scholar
  72. 72.
    Tan YC, Ho YL, Lee AP (2008) Microfluid Nanofluid 4:343–348CrossRefGoogle Scholar
  73. 73.
    Huh D, Bahng JH, Ling YB, Wei HH, Kripfgans OD, Fowlkes JB, Grotberg JB, Takayama S (2007) Anal Chem 79:1369–1376CrossRefGoogle Scholar
  74. 74.
    Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD (2009) Lab Chip 9:1850–1858CrossRefGoogle Scholar
  75. 75.
    Boukellal H, Selimovic S, Jia YW, Cristobal G, Fraden S (2009) Lab Chip 9:331–338CrossRefGoogle Scholar
  76. 76.
    Edgar JS, Milne G, Zhao YQ, Pabbati CP, Lim DSW, Chiu DT (2009) Angew Chem Int Edit 48:2719–2722CrossRefGoogle Scholar
  77. 77.
    Wang W, Yang C, Li CM (2009) Lab Chip 9:1504–1506CrossRefGoogle Scholar
  78. 78.
    Bai YP, He XM, Liu DS, Patil SN, Bratton D, Huebner A, Hollfelder F, Abell C, Huck WTS (2010) Lab Chip 10:1281–1285CrossRefGoogle Scholar
  79. 79.
    Huebner A, Bratton D, Whyte G, Yang M, deMello AJ, Abell C, Hollfelder F (2009) Lab Chip 9:692–698CrossRefGoogle Scholar
  80. 80.
    Frenz L, Blank K, Brouzes E, Griffiths AD (2009) Lab Chip 9:1344–1348CrossRefGoogle Scholar
  81. 81.
    Mary P, Abate AR, Agresti JJ, Weitz DA (2011) Biomicrofluidics 5Google Scholar
  82. 82.
    Hettiarachchi K, Talu E, Longo ML, Dayton PA, Lee AP (2007) Lab Chip 7:463–468CrossRefGoogle Scholar
  83. 83.
    Malic L, Veres T, Tabrizian M (2009) Lab Chip 9:473–475CrossRefGoogle Scholar
  84. 84.
    Marz A, Henkel T, Cialla D, Schmitt M, Popp J (2011) Lab Chip 11:3584–3592CrossRefGoogle Scholar
  85. 85.
    Beer NR, Hindson BJ, Wheeler EK, Hall SB, Rose KA, Kennedy IM, Colston BW (2007) Anal Chem 79:8471–8475CrossRefGoogle Scholar
  86. 86.
    Beer NR, Wheeler EK, Lee-Houghton L, Watkins N, Nasarabadi S, Hebert N, Leung P, Arnold DW, Bailey CG, Colston BW (2008) Anal Chem 80:1854–1858CrossRefGoogle Scholar
  87. 87.
    Kiss MM, Ortoleva-Donnelly L, Beer NR, Warner J, Bailey CG, Colston BW, Rothberg JM, Link DR, Leamon JH (2008) Anal Chem 80:8975–8981CrossRefGoogle Scholar
  88. 88.
    Schaerli Y, Wootton RC, Robinson T, Stein V, Dunsby C, Neil MAA, French PMW, deMello AJ, Abell C, Hollfelder F (2009) Anal Chem 81:302–306CrossRefGoogle Scholar
  89. 89.
    Zeng Y, Novak R, Shuga J, Smith MT, Mathies RA (2010) Anal Chem 82:3183–3190CrossRefGoogle Scholar
  90. 90.
    Leng XF, Zhang WH, Wang CM, Cui LA, Yang CJ (2010) Lab Chip 10:2841–2843CrossRefGoogle Scholar
  91. 91.
    Novak R, Zeng Y, Shuga J, Venugopalan G, Fletcher DA, Smith MT, Mathies RA (2011) Angew Chem Int Edit 50:390–395CrossRefGoogle Scholar
  92. 92.
    Hua ZS, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA, Benton JL, Mitchell TG, Pollack MG (2010) Anal Chem 82:2310–2316CrossRefGoogle Scholar
  93. 93.
    Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR, Larson JW (2011) Lab Chip 11:2167–2174CrossRefGoogle Scholar
  94. 94.
    Pekin D, Skhiri Y, Baret JC, Le Corre D, Mazutis L, Ben Salem C, Millot F, El Harrak A, Hutchison JB, Larson JW, Link DR, Laurent-Puig P, Griffiths AD, Taly V (2011) Lab Chip 11:2156–2166CrossRefGoogle Scholar
  95. 95.
    Reetz MT, Jaeger KE (1999) Biocatalysis - from Discovery to Application 200:31–57CrossRefGoogle Scholar
  96. 96.
    Pluckthun A, Schaffitzel C, Hanes J, Jermutus L (2001) Advances in Protein Chemistry 55(55):367–403CrossRefGoogle Scholar
  97. 97.
    Paegel BM (2010) Curr Opin Chem Biol 14:568–573CrossRefGoogle Scholar
  98. 98.
    Ellington AD, Szostak JW (1990) Nature 346:818–822CrossRefGoogle Scholar
  99. 99.
    Tuerk C, Gold L (1990) Science 249:505–510CrossRefGoogle Scholar
  100. 100.
    Robertson DL, Joyce GF (1990) Nature 344:467–468CrossRefGoogle Scholar
  101. 101.
    Nutiu R, Li Y (2005) Angew Chemie Int Ed 44:1061–1065CrossRefGoogle Scholar
  102. 102.
    Fang X, Tan W (2010) Acc Chem Res 43:48–57CrossRefGoogle Scholar
  103. 103.
    Zhang WY, Zhang WH, Liu ZY, Li C, Zhu Z, Yang CJ (2012) Anal Chem 84:350–355Google Scholar
  104. 104.
    Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, Vamathevan J, Miranda M, Anderson IJ, Fraser JA, Allen JE, Bosdet IE, Brent MR, Chiu R, Doering TL, Dontin MJ, D'Souza CA, Fox DS, Grinberg V, Fu JM, Fukushima M, Haas BJ, Huang JC, Janbon G, Jones SJM, Koo HL, Krzywinski MI, Kwon-Chung JK, Lengeler KB, Maiti R, Marra MA, Marra RE, Mathewson CA, Mitchell TG, Pertea M, Riggs FR, Salzberg SL, Schein JE, Shvartsbeyn A, Shin H, Shumway M, Specht CA, Suh BB, Tenney A, Utterback TR, Wickes BL, Wortman JR, Wye NH, Kronstad JW, Lodge JK, Heitman J, Davis RW, Fraser CM, Hyman RW (2005) Science 307:1321–1324CrossRefGoogle Scholar
  105. 105.
    Zhao SY, Shetty J, Hou LH, Delcher A, Zhu BL, Osoegawa K, de Jong P, Nierman WC, Strausberg RL, Fraser CM (2004) Genome Res 14:1851–1860CrossRefGoogle Scholar
  106. 106.
    Blazej RG, Kumaresan P, Cronier SA, Mathies RA (2007) Anal Chem 79:4499–4506CrossRefGoogle Scholar
  107. 107.
    Ronaghi M, Uhlen M, Nyren P (1998) Science 281:363–365CrossRefGoogle Scholar
  108. 108.
    Goldberg SMD, Johnson J, Busam D, Feldblyum T, Ferriera S, Friedman R, Halpern A, Khouri H, Kravitz SA, Lauro FM, Li K, Rogers YH, Strausberg R, Sutton G, Tallon L, Thomas T, Venter E, Frazier M, Venter JC (2006) Proc Natl Acad Sci U S A 103:11240–11245CrossRefGoogle Scholar
  109. 109.
    Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) Nature 452:U872–U875CrossRefGoogle Scholar
  110. 110.
    Vogelstein B, Kinzler KW (2004) Nat Med (N Y, NY, U S) 10:789–799Google Scholar
  111. 111.
    Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang SL, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) Anal Chem 83:8604–8610CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zhi Zhu
    • 1
  • Gareth Jenkins
    • 1
  • Wenhua Zhang
    • 1
  • Mingxia Zhang
    • 1
  • Zhichao Guan
    • 1
  • Chaoyong James Yang
    • 1
  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, Key Laboratory of Analytical Science, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations