Analytical and Bioanalytical Chemistry

, Volume 403, Issue 3, pp 707–711 | Cite as

Acoustic deposition with NIMS as a high-throughput enzyme activity assay

  • Matthew Greving
  • Xiaoliang Cheng
  • Wolfgang Reindl
  • Benjamin Bowen
  • Kai Deng
  • Katherine Louie
  • Michael Nyman
  • Joseph Cohen
  • Anup Singh
  • Blake Simmons
  • Paul Adams
  • Gary Siuzdak
  • Trent Northen
Short Communication

Abstract

Mass spectrometry (MS)-based enzyme assay has been shown to be a useful tool for screening enzymatic activities from environmental samples. Recently, reported approaches for high-specificity multiplexed characterization of enzymatic activities allow for providing detailed information on the range of enzymatic products and monitoring multiple enzymatic reactions. However, the throughput has been limited by the slow liquid–liquid handling and manual analysis. This rapid communication demonstrates the integration of acoustic sample deposition with nanostructure initiator mass spectrometry (NIMS) imaging to provide reproducible measurements of multiple enzymatic reactions at a throughput that is tenfold to 100-fold faster than conventional MS-based enzyme assay. It also provides a simple means for the visualization of multiple reactions and reaction pathways.

Keywords

Nanostructure initiator mass spectrometry NIMS Nimzyme Enzyme assay Glycoside hydrolase 

References

  1. 1.
    Blanch H, Adams P, Andrews-Cramer K, Frommer W, Simmons B, Keasling JD (2008) ACS Chem Biol 3:17–20CrossRefGoogle Scholar
  2. 2.
    Stehen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Nature 463:559–562CrossRefGoogle Scholar
  3. 3.
    Kim T, Chokhawala H, Hess M, Dana C, Baer Z, Sczyba A, Rubin E, Blanch H, Clark D (2011) Angew Chem 50:11215–11218CrossRefGoogle Scholar
  4. 4.
    Sharrock K (1988) J Biochem Biophys Methods 17:81–105CrossRefGoogle Scholar
  5. 5.
    Reindl W, Deng K, Gladden J, Cheng G, Wong A, Singer S, Singh S, Lee J, Yao C, Hazen T, Singh A, Simmons B, Adams P, Northen T (2011) Energy Environ Sci 4:2884–2893CrossRefGoogle Scholar
  6. 6.
    Northen T, Lee J, Hoang L, Raymond J, Hwang D, Yannone S, Wong C, Siuzdak G (2008) Proc Natl Acad Sci USA 105:3678–3683CrossRefGoogle Scholar
  7. 7.
    Northen T, Yanes O, Northen M, Marrinucci D, Uritboonthai D, Apon J, Golledge S, Nordstrom A, Siuzdak G (2007) Nature 449:1033–1036CrossRefGoogle Scholar
  8. 8.
    Aerni H, Cornett D, Caprioli R (2006) Anal Chem 78:827–834CrossRefGoogle Scholar
  9. 9.
    Woo K, Northen T, Yanes O, Siuzdak G (2008) Nature Prot 3:1341–1349CrossRefGoogle Scholar
  10. 10.
    Deng K, George K, Reindl W, Keasling J, Adams P, Lee T, Singh A, Northen T (2011) Rapid Commun Mass Spectrom (in press)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Matthew Greving
    • 1
  • Xiaoliang Cheng
    • 2
    • 3
  • Wolfgang Reindl
    • 2
    • 3
  • Benjamin Bowen
    • 2
  • Kai Deng
    • 3
    • 4
  • Katherine Louie
    • 2
  • Michael Nyman
    • 1
  • Joseph Cohen
    • 1
  • Anup Singh
    • 3
    • 4
  • Blake Simmons
    • 3
    • 4
  • Paul Adams
    • 3
  • Gary Siuzdak
    • 5
  • Trent Northen
    • 2
    • 3
  1. 1.NextvalSan DiegoUSA
  2. 2.Department of Bioenergy/GTL and Structural Biology, Life Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Physical Biosciences Division, Lawrence Berkeley National LaboratoryJoint BioEnergy Institute (JBEI)BerkeleyUSA
  4. 4.Biotechnology and Bioengineering and Biomass Science and Conversion, Technology DepartmentsSandia National LaboratoriesLivermoreUSA
  5. 5.Department of Chemistry, Center for MetabolomicsThe Scripps Research InstituteLa JollaUSA

Personalised recommendations