Advertisement

Analytical and Bioanalytical Chemistry

, Volume 403, Issue 5, pp 1361–1371 | Cite as

Multiplexed immunoassay to detect anabolic androgenic steroids in human serum

  • Nuria Tort
  • J.-Pablo Salvador
  • M.-Pilar Marco
Original Paper

Abstract

A multianalyte enzyme-linked immunosorbent assay (ELISA) has been developed for the simultaneous detection of anabolic androgenic steroids (AAS) in human serum. The multiplexed method was developed according to a planar strategy in which the analytes are identified by their location in the microtiter plate. In the immunochemical procedure established here, human serum samples are mixed with a cocktail of antibodies and added to the distinct sections of a microplate biofunctionalized with different haptenized biomolecules. The cocktail of antibodies consists of a mixture of polyclonal antibodies raised against stanozolol (ST), boldenone (B), and tetrahydrogestrinone (THG). The whole immunochemical analytical procedure takes around 2 h including sample preparation, and many samples can be processed simultaneously to screen for the presence of the three AAS in a single run. Using this ELISA, ST, B, and THG can be detected and quantified individually. When used as a screening method, due to the cross-reactivity profiles of the immunoreagents used, the presence of up to 11 AAS can be detected simultaneously. The detectabilities achieved by this method in human serum are below the MRPLs (minimum required performance limits) proposed by WADA (World Anti-Doping Agency) and reference laboratories of the European Community.

Figure

Scheme of the multiplexed ELISA procedure.

Keywords

Anabolic-androgenic steroids (AAS) ELISA Multianalyte Human serum 

Notes

Acknowledgments

This work has been supported by the Ministry of Science and Innovation (MAT2011-29335-C03-01). The AMR group is a consolidated research group (Grup de Recerca) of the Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació la Generalitat de Catalunya (expedient 2009 SGR 1343). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. Núria Tort has a FI_B fellowship from the AGAUR (Agència de Gestió d’Ajuts Universitaris i de Recerca) of the Government of Catalonia (Generalitat de Catalunya).

References

  1. 1.
    Ruzicka L (1945) Multimembered rings, higher terpene compounds and male sex hormones (Nobel lecture). http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1939/ruzicka-lecture.pdf
  2. 2.
    Wilson JD, Griffin JE (1980) The use and misuse of androgens. Metabolism 29(12):1278–1295CrossRefGoogle Scholar
  3. 3.
    Bahrke MS, Yesalis CE (2004) Abuse of anabolic androgenic steroids and related substances in sport and exercise. Curr Opin Pharmacol 4(6):614–620CrossRefGoogle Scholar
  4. 4.
    Ciocca M (2005) Medication and supplement use by athletes. Clin Sports Med 24(3):719–738CrossRefGoogle Scholar
  5. 5.
    Hall RC (2005) Abuse of supraphysiologic doses of anabolic steroids. South Med J 98(5):550–555CrossRefGoogle Scholar
  6. 6.
    Yesalis CE, Bahrke MS (2000) Doping among adolescent athletes. Best Pract Res Clin Endocrinol Metab 14(1):25–35CrossRefGoogle Scholar
  7. 7.
    Maravelias C, Dona A, Stefanidou M, Spiliopoulou C (2005) Adverse effects of anabolic steroids in athletes: a constant threat. Toxicol Lett 158(3):167–175CrossRefGoogle Scholar
  8. 8.
    Mukhopadhyay R (2007) Catching doping athletes. Anal Chem:5522–5528Google Scholar
  9. 9.
  10. 10.
  11. 11.
    Ferretti G, Palleschi L, Marchiafava C, Fd Q, Fantozzi L, Ferranti C, Cammarata P, Macri A, Montesissa C, Draisci R (2007) Excretion profile of boldenone and its metabolites after oral administration to veal calves. Anal Chim Acta 589(2):269–274CrossRefGoogle Scholar
  12. 12.
    Gallina G, Ferretti G, Merlanti R, Civitareale C, Capolongo F, Draisci R, Montesissa C (2007) Boldenone, boldione, and milk replacers in the diet of veal calves: the effects of phytosterol content on the urinary excretion of boldenone metabolites. J Agric Food Chem 55(20):8275–8283CrossRefGoogle Scholar
  13. 13.
    Tang H, Vasselli JR, Tong C, Heymsfield SB, Wu EX (2009) In vivo MRI evaluation of anabolic steroid precursor growth effects in a guinea pig model. Steroids 74(8):684–693CrossRefGoogle Scholar
  14. 14.
    Dehennin L, Bonnaire Y, Plou P (2002) Human nutritional supplements in the horse: comparative effects of 19-norandrostenedione and 19-norandrostenediol on the 19-norsteroid profile and consequences for doping control. J Chromatogr B 766(2):257–263Google Scholar
  15. 15.
    Hungerford NL, Sortais B, Smart CG, McKinney AR, Ridley DD, Stenhouse AM, Suann CJ, Munn KJ, Sillence MN, McLeod MD (2005) Analysis of anabolic steroids in the horse: development of a generic ELISA for the screening of 17[alpha]-alkyl anabolic steroid metabolites. J Steroid Biochem Mol Biol 96(3–4):317–334Google Scholar
  16. 16.
    Buiarelli F, Cartoni G, Coccioli F, Merolle M, Neri B (2004) Excretion study of stanozolol in bovine by HPLC–tandem mass spectrometry. Chromatographia 60(9):545–551Google Scholar
  17. 17.
    EC (1996) Directive 96/23/EC. Off J Eur Commun L 125:3Google Scholar
  18. 18.
    EC (1996) Council directive 96/22/EC. Off J Eur Commun L125:1–14Google Scholar
  19. 19.
    SCVPH (1999) Report of the Scientific Committee on Veterinary Measures Relating to Public Health (European Commission DG XXIV), 30 April 1999. European Commission, BrusselsGoogle Scholar
  20. 20.
    Birkeland KI, Hemmersbach P (1999) The future of doping control in athletes—issues related to blood sampling. Sports Med 28(1):25–33Google Scholar
  21. 21.
    Carlstrom K, Palonek E, Garle M, Oftebro H, Stanghelle J, Bjorkhem I (1992) Detection of testosterone administration by increased ratio between serum concentrations of testosterone and 17-alpha-hydroxyprogesterone. Clin Chem 38(9):1779–1784Google Scholar
  22. 22.
    Palonek E, Gottlieb C, Garle M, Bjorkhem I, Carlstrom K (1995) Serum and urinary markers of exogenous testosterone administration. J Steroid Biochem Mol Biol 55(1):121–127CrossRefGoogle Scholar
  23. 23.
    Peng SH, Segura J, Farre M, Gonzalez JC, de la Torre X (2002) Plasma and urinary markers of oral testosterone undecanoate misuse. Steroids 67(1):39–50CrossRefGoogle Scholar
  24. 24.
    Kintz P (2003) Testing for anabolic steroids in hair: a review. Legal Med 5(Supplement 1):S29–S33CrossRefGoogle Scholar
  25. 25.
    Thieme D, Anielski P, Grosse J, Sachs H, Mueller RK (2003) Identification of anabolic steroids in serum, urine, sweat and hair: comparison of metabolic patterns. Anal Chim Acta 483(1–2):299–306CrossRefGoogle Scholar
  26. 26.
    Aman C, Pastor A, Cighetti G, de la Guardia M (2006) Development of a multianalyte method for the determination of anabolic hormones in bovine urine by isotope-dilution GC-MS/MS. Anal Bioanal Chem 386(6):1869–1879CrossRefGoogle Scholar
  27. 27.
    Dubois M, Taillieu X, Colemonts Y, Lansival B, De Graeve J, Delahaut P (1998) GC-MS determination of anabolic steroids after multi-immunoaffinity purification. Analyst 123(12):2611–2616CrossRefGoogle Scholar
  28. 28.
    Impens S, Van Loco J, Degroodt JM, De Brabander H (2007) A downscaled multi-residue strategy for detection of anabolic steroids in bovine urine using gas chromatography tandem mass spectrometry (GC-MS3). Anal Chim Acta 586(1–2):43–48CrossRefGoogle Scholar
  29. 29.
    Kootstra PR, Zoontjes PW, van Tricht EF, Sterk SS (2007) Multi-residue screening of a minimum package of anabolic steroids in urine with GC-MS. Anal Chim Acta 586(1–2):82–92CrossRefGoogle Scholar
  30. 30.
    Rambaud L, Monteau F, Deceuninck Y, Bichon E, Andre F, Le Bizec B (2007) Development and validation of a multi-residue method for the detection of a wide range of hormonal anabolic compounds in hair using gas chromatography–tandem mass spectrometry. Anal Chim Acta 586(1–2):93–104Google Scholar
  31. 31.
    Stanley SMR, Smith L, Rodgers JP (1997) Biotransformation of 17-alkylsteroids in the equine: gas chromatographic–mass spectral identification of ten intermediate metabolites of methyltestosterone. J Chromatogr B 690(1–2):55–64Google Scholar
  32. 32.
    Van Ginkel LA, Stephany RW, Van Rossum HJ, Steinbuch HM, Zomer G, Van de Heeft E, De Jong APJM (1989) Multi-immunoaffinity chromatography: a simple and highly selective clean-up method for multi-anabolic residue analysis of meat. J Chromatogr B 489(1):111–120Google Scholar
  33. 33.
    Van Thuyne W, Van Eenoo P, Delbeke FT (2008) Implementation of gas chromatography combined with simultaneously selected ion monitoring and full scan mass spectrometry in doping analysis. J Chromatogr A 1210(2):193–202CrossRefGoogle Scholar
  34. 34.
    Blasco C, Van Poucke C, Van Peteghem C (2007) Analysis of meat samples for anabolic steroids residues by liquid chromatography/tandem mass spectrometry. J Chromatogr A 1154(1–2):230–239CrossRefGoogle Scholar
  35. 35.
    Deventer K, Eenoo PV, Delbeke FT (2006) Screening for anabolic steroids in doping analysis by liquid chromatography/electrospray ion trap mass spectrometry. Biomed Chromatogr 20(5):429–433CrossRefGoogle Scholar
  36. 36.
    Draisci R, Palleschi L, Ferretti E, Lucentini L, delli Quadri F (2003) Confirmatory analysis of 17[beta]-boldenone, 17[alpha]-boldenone and androsta-1,4-diene-3,17-dione in bovine urine by liquid chromatography–tandem mass spectrometry. J Chromatogr B 789(2):219–226Google Scholar
  37. 37.
    Guan F, Uboh CE, Soma LR, Luo Y, Rudy J, Tobin T (2005) Detection, quantification and confirmation of anabolic steroids in equine plasma by liquid chromatography and tandem mass spectrometry. J Chromatogr B 829(1–2):56–68CrossRefGoogle Scholar
  38. 38.
    Nielen MWF, Lasaroms JJP, Mulder PPJ, Van Hende J, van Rhijn JHA, Groot MJ (2006) Multi residue screening of intact testosterone esters and boldenone undecylenate in bovine hair using liquid chromatography electrospray tandem mass spectrometry. J Chromatogr B 830(1):126–134CrossRefGoogle Scholar
  39. 39.
    Pozo OJ, Deventer K, Van Eenoo P, Delbeke FT (2008) Efficient approach for the comprehensive detection of unknown anabolic steroids and metabolites in human urine by liquid chromatography−electrospray-tandem mass spectrometry. Anal Chem 80(5):1709–1720. doi: 10.1021/ac7020757 CrossRefGoogle Scholar
  40. 40.
    Shao B, Zhao R, Meng J, Xue Y, Wu G, Hu J, Tu X (2005) Simultaneous determination of residual hormonal chemicals in meat, kidney, liver tissues and milk by liquid chromatography–tandem mass spectrometry. Anal Chim Acta 548(1–2):41–50Google Scholar
  41. 41.
    Van Poucke C, Van Peteghem C (2002) Development and validation of a multi-analyte method for the detection of anabolic steroids in bovine urine with liquid chromatography–tandem mass spectrometry. J Chromatogr B 772(2):211–217Google Scholar
  42. 42.
    Xu CL, Chu XG, Peng CF, Jin ZY, Wang LY (2006) Development of a faster determination of 10 anabolic steroids residues in animal muscle tissues by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 41(2):616–621CrossRefGoogle Scholar
  43. 43.
    Yu NH, Ho ENM, Leung DKK, Wan TSM (2005) Screening of anabolic steroids in horse urine by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 37(5):1031–1038Google Scholar
  44. 44.
    Brun EM, Hernandez-Albors A, Ventura R, Puchades R, Maquieira A (2010) Enzyme-linked immunosorbent assays for the synthetic steroid gestrinone. Talanta 82(4):1581–1587. doi: 10.1016/j.talanta.2010.07.067 CrossRefGoogle Scholar
  45. 45.
    Fitzpatrick J, Manning B, O’Kennedy R (2004) Enzyme-linked immunosorbent assay-based detection of free trenbolone in bovine bile. J Agric Food Chem 52(14):4351–4354. doi: 10.1021/jf0352531 Google Scholar
  46. 46.
    Hagedorn H-W, Schulz R, Jaeschke G (1994) Identification and verification of the anabolic steroid boldenone in equine blood and urine by HPLC/ELIS. Biomed Chromatogr 8(2):63–68CrossRefGoogle Scholar
  47. 47.
    Jiang J, Wang Z, Zhang H, Zhang X, Liu X, Wang S (2011) Monoclonal antibody-based ELISA and colloidal gold immunoassay for detecting 19-nortestosterone residue in animal tissues. J Agric Food Chem 59(18):9763–9769. doi: 10.1021/jf2012437 Google Scholar
  48. 48.
    Jiang JQ, Zhang HT, Yao SX, Wang ZL, Wang JH (2011) Production and characterisation of monoclonal antibodies against 19-nortestosterone. Biomed Environ Sci 24(2):172–179. doi: 10.3967/0895-3988.2011.02.012 Google Scholar
  49. 49.
    Kramer K, Hubauer A, Lausterer R, Salvador J-P, Marco M-P (2007) Production of antibodies for the quantitative detection of the anabolically active androgens 17β-boldenone and methylboldenone. Anal Lett 40:1461CrossRefGoogle Scholar
  50. 50.
    Lu H, Conneely G, Crowe MA, Aherne M, Pravda M, Guilbault GG (2006) Screening for testosterone, methyltestosterone, 19-nortestosterone residues and their metabolites in bovine urine with enzyme-linked immunosorbent assay (ELISA). Anal Chim Acta 570(1):116–123CrossRefGoogle Scholar
  51. 51.
    Salvador JP, Sánchez-Baeza F, Marco MP (2008) Simultaneous immunochemical detection of stanozolol and the main human metabolite, 3′-hydroxy-stanozolol, in urine and serum samples. Anal Biochem 376(2):221–228Google Scholar
  52. 52.
    Salvador J-P, Sanchez-Baeza F, Marco M-P (2007) Preparation of antibodies for the designer steroid tetrahydrogestrinone and development of an enzyme-linked immunosorbent assay for human urine analysis. Anal Chem 79(10):3734–3740CrossRefGoogle Scholar
  53. 53.
    Conneely G, Aherne M, Lu H, Guilbault GG (2007) Development of an immunosensor for the detection of testosterone in bovine urine. Anal Chim Acta 583(1):153–160CrossRefGoogle Scholar
  54. 54.
    Conneely G, Aherne M, Lu H, Guilbault GG (2007) Electrochemical immunosensors for the detection of 19-nortestosterone and methyltestosterone in bovine urine. Sensor Actuat B 121(1):103–112Google Scholar
  55. 55.
    Kreuzer M, Quidant R, Salvador JP, Marco MP, Badenes G (2008) Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Anal Bioanal Chem 391(5):1813–1820CrossRefGoogle Scholar
  56. 56.
    Kreuzer MP, Quidant R, Badenes G, Marco M-P (2006) Quantitative detection of doping substances by a localised surface plasmon sensor. Biosens Bioelectron 21(7):1345–1349CrossRefGoogle Scholar
  57. 57.
    Liqiang Liu CP, Jin Z, Chuanlai Xu (2007) Development and evaluation of a rapid lateral flow immunochromatographic strip assay for screening 19-nortestosterone. Biomed Chromatogr 21(8):861–866CrossRefGoogle Scholar
  58. 58.
    Du H, Lu Y, Yang W, Wu M, Wang J, Zhao S, Pan M, Cheng J (2004) Preparation of steroid antibodies and parallel detection of multianabolic steroid abuse with conjugated hapten microarray. Anal Chem 76(20):6166–6171CrossRefGoogle Scholar
  59. 59.
    Tort N, Salvador JP, Marco MP, Eritja R, Poch M, Martínez E, Samitier J (2009) Fluorescence site-encoded DNA addressable hapten microarray for anabolic androgenic steroids. TrAC Trends Anal Chem 28(6):718–728CrossRefGoogle Scholar
  60. 60.
    Adrian J, Pinacho DG, Granier B, Diserens JM, Sánchez-Baeza F, Marco MP (2008) A multianalyte ELISA for immunochemical screening of sulfonamide, fluoroquinolone and β-lactam antibiotics in milk samples using class-selective bioreceptors. Anal Bioanal Chem 391:1703–1712Google Scholar
  61. 61.
    Krotky AJ, Zeeh B (1995) Immunoassays for residue analysis of agrochemicals: proposed guidelines for precision, standardization and quality control. Pure Appl Chem 67(12):2065–2088CrossRefGoogle Scholar
  62. 62.
    Kuuranne T, Kotiaho T, Pedersen-Bjergaard S, Rasmussen KE, Leinonen A, Westwood S, Kostiainen R (2003) Feasibility of a liquid-phase microextraction sample clean-up and liquid chromatographic/mass spectrometric screening method for selected anabolic steroid glucuronides in biological samples. J Mass Spectrom 38:16–26CrossRefGoogle Scholar
  63. 63.
    Poelmans S, De Wasch K, De Brabander HF, Van De Wiele M, Courtheyn D, van Ginkel LA, Sterk SS, Delahaut P, Dubois M, Schilt R (2002) Analytical possibilities for the detection of stanozolol and its metabolites. Anal Chim Acta 473(1–2):39–47CrossRefGoogle Scholar
  64. 64.
    Calvo D, Tort N, Salvador J, Marco M, Centi F, Marco S (2011) Preliminary study for simultaneous detection and quantification of androgenic anabolic steroids using ELISA and pattern recognition techniques. Analyst 136:4045–4052Google Scholar
  65. 65.
    Nichkova M, Galve R, Marco MP (2002) Biological monitoring of 2,4,5-trichlorophenol (II): evaluation of an enzyme-linked immunosorbent assay for the analysis of water, urine, and serum samples. Chem Res Toxicol 15(11):1371–1379. doi: 10.1021/tx025556+ CrossRefGoogle Scholar
  66. 66.
    Abad A, Montoya A (1997) Development of an enzyme-linked immunosorbent assay to carbaryl. 2. Assay optimization and application to the analysis of water samples. J Agric Food Chem 45(4):1495–1501CrossRefGoogle Scholar
  67. 67.
    Jaeger LE, Jones AND, Hammock BD (1998) Development of an enzyme-linked immunosorbent assay for atrazine mercapturic acid in human urine. Chem Res Toxicol 11(4):342–352CrossRefGoogle Scholar
  68. 68.
    Staimer N, Gee SJ, Hammock BD (2001) Development of a class-selective enzyme immunoassay for urinary phenolic glucuronides. Anal Chim Acta 444(1):27–36CrossRefGoogle Scholar
  69. 69.
    Hendriks L, Gielen B, Pottie G, Haesen V, Bagyary S, Raus J (1993) Matrix effects in the radioimmunoassay of estradiol and testosterone in plasma of veal calves and how to avoid them. Anal Chim Acta 275(1–2):113–122CrossRefGoogle Scholar
  70. 70.
    Maickel R (1994) In: Hill HM, Wilson, ID, Reid E (eds) Biofluid and tissue analysis for drugs including hypolipidaemics. Royal Society of Chemistry, pp 3–16Google Scholar
  71. 71.
    EC (2005) Summary report for EU CRL-NRL Workshop, 10–12 Oct 2005. RIVM, BilthovenGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Nuria Tort
    • 1
    • 2
  • J.-Pablo Salvador
    • 2
    • 1
  • M.-Pilar Marco
    • 1
    • 2
  1. 1.Applied Molecular Receptors group (AMRg), IQAC-CSICBarcelonaSpain
  2. 2.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)BarcelonaSpain

Personalised recommendations