Analytical and Bioanalytical Chemistry

, Volume 403, Issue 10, pp 3041–3050 | Cite as

Novel approach for the simultaneous detection of DNA from different fish species based on a nuclear target: quantification potential

  • Marta PradoEmail author
  • Ana Boix
  • Christoph von Holst
Original Paper


The development of DNA-based methods for the identification and quantification of fish in food and feed samples is frequently focused on a specific fish species and/or on the detection of mitochondrial DNA of fish origin. However, a quantitative method for the most common fish species used by the food and feed industry is needed for official control purposes, and such a method should rely on the use of a single-copy nuclear DNA target owing to its more stable copy number in different tissues. In this article, we report on the development of a real-time PCR method based on the use of a nuclear gene as a target for the simultaneous detection of fish DNA from different species and on the evaluation of its quantification potential. The method was tested in 22 different fish species, including those most commonly used by the food and feed industry, and in negative control samples, which included 15 animal species and nine feed ingredients. The results show that the method reported here complies with the requirements concerning specificity and with the criteria required for real-time PCR methods with high sensitivity.


Real-time PCR Nuclear DNA Fish DNA Quantification Rhodopsin gene Degenerate primers/probe 



The authors would like to thank Jose Manuel Gallardo and his group from the Marine Research Institute (IIM) of the Spanish National Research Council (CSIC) (Vigo, Spain) for kindly donating well-characterized hake species and Eugénia de Andrade Silva and the Reference Materials Unit of the Institute for Reference Materials and Measurements for their help with the DNA sequencing.


  1. 1.
    Rasmussen RS, Morrisey MT (2009) Comp Rev Food Sci Food Saf 8:118–154CrossRefGoogle Scholar
  2. 2.
    European Parliament and Council (2006) Off J Eur Union 404:1–8Google Scholar
  3. 3.
    Sun M, Liang C, Gao H, Lin C, Deng M (2009) J AOAC Int 92(1):234–240Google Scholar
  4. 4.
    Griesmeier U, Vázquez-Cortés S, Bublin M, Radauer C, Ma Y, Briza P, Fernández-Rivas M, Breiteneder H (2010) Allergy 65:191–198CrossRefGoogle Scholar
  5. 5.
    European Parliament and Council (2000) Off J Eur Communities L 109:29–42Google Scholar
  6. 6.
    European Parliament and Council (2003) Off J Eur Union 308:15–18Google Scholar
  7. 7.
    European Commission (2007) Off J Eur Union 310:11–14Google Scholar
  8. 8.
    Pascoal A, Prado M, Calo P, Cepeda A, Barros-Velázquez J (2005) Eur Food Res Technol 220:444–450CrossRefGoogle Scholar
  9. 9.
    Prado M, Berben G, Fumière O, Van Duijn G, Mensinga-Kruize J, Reaney S, Boix A, von Holst C (2007) J Agric Food Chem 55:7495–7501CrossRefGoogle Scholar
  10. 10.
    Giménez MJ, Pistón F, Martín A, Atienza SG (2010) Food Chem 118:482–487CrossRefGoogle Scholar
  11. 11.
    Prado M, Fumière O, Boix A, Marien A, Berben G, von Holst C (2009) Anal Bioanal Chem 394:1423–1431CrossRefGoogle Scholar
  12. 12.
    von Holst C, Boix A, Marien A, Prado M (2012) Food Control 24(1–2):142–147CrossRefGoogle Scholar
  13. 13.
    Fishmeal Information Network (2008) FIN: Fishmeal Information Network dossier Accessed May 2009
  14. 14.
    Martín I, García T, Rojas M, Pegels N, Pavón MA, Hernández PE, González I, Martín R (2010) J AOAC Int 93(6):1768–1777Google Scholar
  15. 15.
    Benedetto A, Abete MC, Squadrone S (2011) Food Chem 126(3):1436–1442CrossRefGoogle Scholar
  16. 16.
    Sivaganesan M, Seifring S, Varma M, Haugland RA, Shanks OC (2008) BMC Bioinformatics 9:120CrossRefGoogle Scholar
  17. 17.
    Garriga P, Manyosa J (2002) FEBS Lett 528:17–22CrossRefGoogle Scholar
  18. 18.
    Venkatesh B, Ning Y, Brenner S (1999) Proc Natl Acad Sci USA 96:10267–10271CrossRefGoogle Scholar
  19. 19.
    Fish Trace European Project. Genetic catalogue, biological reference collections and online database of European marine fishes Accessed March 2009
  20. 20.
    Thermo Scientific (2009) Hoechst dye 33258 assay for dsDNA Accessed 23 Jun 2009
  21. 21.
    Sevilla RG, Diez A, Norén M, Mouchel O, Jérôme M, Verrez-Bagnis V, Van Pelts H (2007) Favre- Krey L, Krey G, The Fishtrace Consortium, Bautista JM. Mol Ecol Notes 7:730–734CrossRefGoogle Scholar
  22. 22.
    Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious version 4.6. Available from
  23. 23.
    Raymaekers M, Smets R, Maes B, Cartuyvels R (2009) J Clin Lab Anal 23:145–151CrossRefGoogle Scholar
  24. 24.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) Clin Chem 55(4):611–622CrossRefGoogle Scholar
  25. 25.
    Taylor MI, Fox C, Rico I, Rico C (2002) Mol Ecol Notes 2(4):599–601CrossRefGoogle Scholar
  26. 26.
    Lopez I, Pardo MA (2005) J Agric Food Chem 53(11):4554–4560CrossRefGoogle Scholar
  27. 27.
    Asensio GL (2007) Trends Food Sci Technol 18(11):558–566CrossRefGoogle Scholar
  28. 28.
    Pepe T, Trotta M, Di Marco I, Anastasio A, Bautista JM, Cortesi ML (2007) J Agric Food Chem 55(9):3681–3685CrossRefGoogle Scholar
  29. 29.
    Burns M, Valdivia H (2007) Eur Food Res Technol 226:7–18CrossRefGoogle Scholar
  30. 30.
    Terry C, Harris N, Parkes H (2002) J AOAC Int 85:768–774Google Scholar
  31. 31.
    Peano C, Samson M, Palmieri L, Gulli M, Marmirolli N (2004) J Agric Food Chem 52(23):6962–6968CrossRefGoogle Scholar
  32. 32.
    Dhanasekaran S, Doherty TM, Kenneth J (2010) J Immunol Methods 354(1–2):34–39CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.European Commission, Joint Research CentreInstitute for Reference Materials and Measurements (JRC-IRMM)GeelBelgium
  2. 2.International Iberian Nanotechnology Laboratory (INL)BragaPortugal

Personalised recommendations