Analytical and Bioanalytical Chemistry

, Volume 403, Issue 8, pp 2173–2183 | Cite as

Protein-imprinted materials: rational design, application and challenges

  • Kaiguang Yang
  • Lihua ZhangEmail author
  • Zhen Liang
  • Yukui Zhang


Protein imprinting is a promising tool for generating artificial biomimetic receptors with antibody-like specific recognition sites. Recently, protein-imprinted materials, as potential antibody substitutes, have attracted much attention in many fields, for example chemical sensors, chromatographic stationary phases, and artificial enzymes, owing to their long-term storage stability, potential re-usability, resistance to harsh environment, and low cost. In this critical review, we focus our discussion on the rational preparation of protein-imprinted materials in terms of choice of template, functional monomer, crosslinker, and polymerization format. In addition, several highlighted applications of protein-imprinted materials are emphasized, not only in well-known fields but also in some unique fields, for example proteomics and tissue engineering. Finally, we propose challenges arising from the intrinsic properties of protein imprinting, for example obtaining the template, heterogeneous binding, and extrinsic competition, for example immobilized aptamers.


Schematic representation of fabrication and application of protein-imprinted materials


Molecular imprinting Protein Antibody Recognition sites 



This work was supported by the National Basic Research Program of China (2012CB910601), the National Nature Science Foundation (21005078 and 21027002), the Creative Research Group Project of the NSFC (21021004), the Innovation Method Research of MOST (grant 2010IM030500), the Knowledge Innovation Project of the Chinese Academy of Sciences, and the Opening Project of the State Key Laboratory of Polymer Materials Engineering (Sichuan University) (KF201104).


  1. 1.
    Whitcombe MJ (2011) Nat Chem 3:657–658CrossRefGoogle Scholar
  2. 2.
    Alderton GK (2009) Nat Rev Cancer 9:382–382CrossRefGoogle Scholar
  3. 3.
    Cesari F (2009) Nat Rev Mol Cell Biol 10:577–577CrossRefGoogle Scholar
  4. 4.
    Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) Chem Soc Rev 40:1547–1571CrossRefGoogle Scholar
  5. 5.
    Coombs KM (2011) Expert Rev Proteomics 8:659–677CrossRefGoogle Scholar
  6. 6.
    Holthoff EL, Bright FV (2007) Acc Chem Res 40:756–767CrossRefGoogle Scholar
  7. 7.
    Issaq HJ, Xiao Z, Veenstra TD (2007) Chem Rev 107:3601–3620CrossRefGoogle Scholar
  8. 8.
    Kuramitz H (2009) Anal Bioanal Chem 394:61–69CrossRefGoogle Scholar
  9. 9.
    Ng AHC, Uddayasankar U, Wheeler AR (2010) Anal Bioanal Chem 397:991–1007CrossRefGoogle Scholar
  10. 10.
    Taylor SL, Nordlee JA, Niemann LM, Lambrecht DM (2009) Anal Bioanal Chem 395:83–92CrossRefGoogle Scholar
  11. 11.
    Borrebaeck CAK (2000) Immunol Today 21:379–382CrossRefGoogle Scholar
  12. 12.
    Boehm T (2011) Nat Rev Immunol 11:307–317CrossRefGoogle Scholar
  13. 13.
    Carter PJ (2006) Nat Rev Immunol 6:343–357CrossRefGoogle Scholar
  14. 14.
    Zhou X, Li W, He X, Chen L, Zhang Y (2007) Sep Purif Rev 36:257–283CrossRefGoogle Scholar
  15. 15.
    Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW (2006) Biotechnol Prog 22:1474–1489Google Scholar
  16. 16.
    Spivak DA (2005) Adv Drug Deliv Rev 57:1779–1794CrossRefGoogle Scholar
  17. 17.
    Ye L, Mosbach K (2008) Chem Mater 20:859–868CrossRefGoogle Scholar
  18. 18.
    Rachkov A, Minoura N (2001) Biochim Biophys Acta 1544:255–266CrossRefGoogle Scholar
  19. 19.
    Reichlin M (1972) J Mol Biol 64:485–496CrossRefGoogle Scholar
  20. 20.
    Nishino H, Huang C-S, Shea KJ (2006) Angew Chem Int Ed 45:2392–2396CrossRefGoogle Scholar
  21. 21.
    Kempe M, Glad M, Mosbach K (1995) J Mol Recognit 8:35–39CrossRefGoogle Scholar
  22. 22.
    Liu J, Yang K, Deng Q, Li Q, Zhang L, Liang Z, Zhang Y (2011) Chem Commun 47:3969–3971CrossRefGoogle Scholar
  23. 23.
    Liu JX, Deng QL, Yang KG, Zhang LH, Liang Z, Zhang YK (2010) J Sep Sci 33:2757–2761CrossRefGoogle Scholar
  24. 24.
    Venton DL, Gudipati E (1995) Biochim Biophys Acta 1250:126–136CrossRefGoogle Scholar
  25. 25.
    Venton DL, Gudipati E (1995) Biochim Biophys Acta 1250:117–125CrossRefGoogle Scholar
  26. 26.
    Hjertén S, Liao JL, Nakazato K, Wang Y, Zamaratskaia G, Zhang HX (1997) Chromatographia 44:227–234CrossRefGoogle Scholar
  27. 27.
    Tong D, Hetenyi C, Bikadi Z, Gao JP, Hjerten S (2001) Chromatographia 54:7–14CrossRefGoogle Scholar
  28. 28.
    Takatsy A, Kilar A, Kilar F, Hjerten S (2006) J Sep Sci 29:2802–2809CrossRefGoogle Scholar
  29. 29.
    Takatsy A, Vegvari A, Hjerten S, Kilar F (2007) Electrophoresis 28:2345–2350CrossRefGoogle Scholar
  30. 30.
    Rachkov A, Minoura N (2000) J Chromatogr A 889:111–118CrossRefGoogle Scholar
  31. 31.
    Rachkov A, Hu MJ, Bulgarevich E, Matsumoto T, Minoura N (2004) Anal Chim Acta 504:191–197CrossRefGoogle Scholar
  32. 32.
    Minouraa N, Rachkov A, Higuchi M, Shimizu T (2001) Bioseparation 10:399–407CrossRefGoogle Scholar
  33. 33.
    Rosellini E, Barbani N, Giusti P (2010) J Appl Polym Sci 118:3236–3244CrossRefGoogle Scholar
  34. 34.
    Tai DF, Jhang MH, Chen GY, Wang SC, Lu KH, Lee YD, Liu HT (2010) Anal Chem 82:2290–2293CrossRefGoogle Scholar
  35. 35.
    Kotrotsiou O, Chaitidou S, Kiparissides C (2009) Mater Sci Eng C Mater Biol Appl 29:2141–2146CrossRefGoogle Scholar
  36. 36.
    Urraca JL, Aureliano CS, Schillinger E, Esselmann H, Wiltfang J, Sellergren B (2011) J Am Chem Soc 133:9220–9223CrossRefGoogle Scholar
  37. 37.
    Karim K, Breton F, Rouillon R, Piletska EV, Guerreiro A, Chianella I, Piletsky SA (2005) Adv Drug Deliv Rev 57:1795–1808CrossRefGoogle Scholar
  38. 38.
    Wu LQ, Li YZ (2004) J Mol Recognit 17:567–574CrossRefGoogle Scholar
  39. 39.
    Karlsson BC, O’Mahony J, Karlsson JG, Bengtsson H, Eriksson LA, Nicholls IA (2009) J Am Chem Soc 131:13297–13304CrossRefGoogle Scholar
  40. 40.
    Takeuchi T, Fukuma D, Matsui J (1999) Anal Chem 71:285–290CrossRefGoogle Scholar
  41. 41.
    Janiak DS, Kofinas P (2007) Anal Bioanal Chem 389:399–404CrossRefGoogle Scholar
  42. 42.
    Bossi A, Bonini F, Turner APF, Piletsky SA (2007) Biosens Bioelectron 22:1131–1137CrossRefGoogle Scholar
  43. 43.
    Turan E, Ozcetin G, Caykara T (2009) Macromol Biosci 9:421–428CrossRefGoogle Scholar
  44. 44.
    Su WX, Rick J, Chou TC (2009) Microchem J 92:123–128CrossRefGoogle Scholar
  45. 45.
    Chen YW, Rick J, Chou TC (2009) Org Biomol Chem 7:488–494CrossRefGoogle Scholar
  46. 46.
    Tai DF, Lin CY, Wu TZ, Huang JH, Shu PY (2006) Clin Chem 52:1486–1491CrossRefGoogle Scholar
  47. 47.
    Tai DF, Lin CY, Wu TZ, Chen LK (2005) Anal Chem 77:5140–5143CrossRefGoogle Scholar
  48. 48.
    Saridakis E, Khurshid S, Govada L, Phan Q, Hawkins D, Crichlow GV, Lolis E, Reddy SM, Chayen NE (2011) Proc Natl Acad Sci U S A 108:11081–11086CrossRefGoogle Scholar
  49. 49.
    El Kirat K, Bartkowski M, Haupt K (2009) Biosens Bioelectron 24:2618–2624CrossRefGoogle Scholar
  50. 50.
    Lin HY, Rick J, Chou TC (2007) Biosens Bioelectron 22:3293–3301CrossRefGoogle Scholar
  51. 51.
    Zhao HL, Guo TY, Xia YQ, Song MD (2008) Chin Chem Lett 19:233–236CrossRefGoogle Scholar
  52. 52.
    Tan CJ, Tong YW (2007) Langmuir 23:2722–2730CrossRefGoogle Scholar
  53. 53.
    Sibrian-Vazquez M, Spivak DA (2004) J Am Chem Soc 126:7827–7833CrossRefGoogle Scholar
  54. 54.
    Yoshimatsu K, LeJeune J, Spivak DA, Ye L (2009) Analyst 134:719–724CrossRefGoogle Scholar
  55. 55.
    Tan CJ, Tong YW (2007) Anal Bioanal Chem 389:369–376CrossRefGoogle Scholar
  56. 56.
    Wang YT, Zhou YX, Sokolov J, Rigas B, Levon K, Rafailovich M (2008) Biosens Bioelectron 24:162–166CrossRefGoogle Scholar
  57. 57.
    Li L, He XW, Chen LX, Zhang YK (2009) Sci China Ser B 52:1402–1411CrossRefGoogle Scholar
  58. 58.
    Lu Y, Yan CL, Wang XJ, Wang GK (2009) Appl Surf Sci 256:1341–1346CrossRefGoogle Scholar
  59. 59.
    Yao W, Ning BA, Zhou HY, Fang YJ, Gao ZX (2008) J Sep Sci 31:413–418CrossRefGoogle Scholar
  60. 60.
    Matsunaga T, Hishiya T, Takeuchi T (2007) Anal Chim Acta 591:63–67CrossRefGoogle Scholar
  61. 61.
    Pan GQ, Ma Y, Zhang Y, Guo XZ, Li CX, Zhang HQ (2011) Soft Matter 7:8428–8439CrossRefGoogle Scholar
  62. 62.
    Pan GQ, Zhang Y, Guo XZ, Li CX, Zhang HQ (2010) Biosens Bioelectron 26:976–982CrossRefGoogle Scholar
  63. 63.
    Li Y, Zhou W-H, Yang H-H, Wang X-R (2009) Talanta 79:141–145CrossRefGoogle Scholar
  64. 64.
    Shi H, Tsai WB, Garrison MD, Ferrari S, Ratner BD (1999) Nature 398:593–597CrossRefGoogle Scholar
  65. 65.
    Nematollahzadeh A, Sun W, Aureliano CSA, Lütkemeyer D, Stute J, Abdekhodaie MJ, Shojaei A, Sellergren B (2011) Angew Chem Int Ed 50:495–498CrossRefGoogle Scholar
  66. 66.
    Li Y, Yang H-H, You Q-H, Zhuang Z-X, Wang X-R (2006) Anal Chem 78:317–320CrossRefGoogle Scholar
  67. 67.
    Wulff G (2002) Chem Rev 102:1–28CrossRefGoogle Scholar
  68. 68.
    Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) J Mol Recognit 19:106–180CrossRefGoogle Scholar
  69. 69.
    Verheyen E, Schillemans JP, van Wijk M, Demeniex M-A, Hennink WE, van Nostrum CF (2011) Biomaterials 32:3008–3020CrossRefGoogle Scholar
  70. 70.
    Xu W, Su S, Jiang P, Wang H, Dong X, Zhang M (2010) J Chromatogr A 1217:7198–7207CrossRefGoogle Scholar
  71. 71.
    Qin L, He XW, Zhang W, Li WY, Zhang YK (2009) J Chromatogr A 1216:807–814CrossRefGoogle Scholar
  72. 72.
    Lin Z, Yang F, He X, Zhao X, Zhang Y (2009) J Chromatogr A 1216:8612–8622CrossRefGoogle Scholar
  73. 73.
    Qin L, He XW, Jia M, Li WY, Zhang YK (2011) Chem Eur J 17:1696–1704CrossRefGoogle Scholar
  74. 74.
    Guo TY, Xia YQ, Wang J, Song MD, Zhang BH (2005) Biomaterials 26:5737–5745CrossRefGoogle Scholar
  75. 75.
    Fang C, Yi CL, Wang Y, Cao YH, Liu XY (2009) Biosens Bioelectron 24:3164–3169CrossRefGoogle Scholar
  76. 76.
    Liang RN, Song DA, Zhang RM, Qin W (2010) Angew Chem Int Ed 49:2556–2559CrossRefGoogle Scholar
  77. 77.
    Reimhult K, Yoshimatsu K, Risveden K, Chen S, Ye L, Krozer A (2008) Biosens Bioelectron 23:1908–1914CrossRefGoogle Scholar
  78. 78.
    Valero-Navarro A, Salinas-Castillo A, Fernandez-Sanchez JF, Segura-Carretero A, Mallavia R, Fernandez-Gutierrez A (2009) Biosens Bioelectron 24:2305–2311CrossRefGoogle Scholar
  79. 79.
    Fang YJ, Yan SL, Ning BA, Liu N, Gao ZX, Chao FH (2009) Biosens Bioelectron 24:2323–2327CrossRefGoogle Scholar
  80. 80.
    Cai D, Ren L, Zhao HZ, Xu CJ, Zhang L, Yu Y, Wang HZ, Lan YC, Roberts MF, Chuang JH, Naughton MJ, Ren ZF, Chiles TC (2010) Nat Nanotechnol 5:597–601CrossRefGoogle Scholar
  81. 81.
    Sellergren B (2010) Nat Chem 2:7–8CrossRefGoogle Scholar
  82. 82.
    Cutivet A, Schembri C, Kovensky J, Haupt K (2009) J Am Chem Soc 131:14699–14702CrossRefGoogle Scholar
  83. 83.
    Sellergren B, Allender CJ (2005) Adv Drug Deliv Rev 57:1733–1741CrossRefGoogle Scholar
  84. 84.
    Rosellini E, Barbani N, Giusti P, Ciardelli G, Cristallini C (2010) J Appl Polym Sci 118:3236–3244CrossRefGoogle Scholar
  85. 85.
    Chen L, Xu S, Li J (2011) Chem Soc Rev 40:2922–2942CrossRefGoogle Scholar
  86. 86.
    Pestourie C, Tavitian B, Duconge F (2005) Biochimie 87:921–930CrossRefGoogle Scholar
  87. 87.
    Jayasena SD (1999) Clin Chem 45:1628–1650Google Scholar
  88. 88.
    Hermann T, Patel DJ (2000) Science 287:820–825CrossRefGoogle Scholar
  89. 89.
    Giovannoli C, Baggiani C, Anfossi L, Giraudi G (2008) Electrophoresis 29:3349–3365CrossRefGoogle Scholar
  90. 90.
    Ruta J, Ravelet C, Grosset C, Fize J, Ravel A, Villet A, Peyrin E (2006) Anal Chem 78:3032–3039CrossRefGoogle Scholar
  91. 91.
    Ravelet C, Grosset C, Peyrin E (2006) J Chromatogr A 1117:1–10CrossRefGoogle Scholar
  92. 92.
    Jenison RD, Gill SC, Pardi A, Polisky B (1994) Science 263:1425–1429CrossRefGoogle Scholar
  93. 93.
    Collett JR, Cho EJ, Ellington AD (2005) Methods 37:4–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kaiguang Yang
    • 1
  • Lihua Zhang
    • 1
    Email author
  • Zhen Liang
    • 1
  • Yukui Zhang
    • 1
  1. 1.National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical Physics, Chinese Academy of ScienceDalianChina

Personalised recommendations