Advertisement

Analytical and Bioanalytical Chemistry

, Volume 403, Issue 2, pp 473–482 | Cite as

Deuterium-labelled N-acyl-l-homoserine lactones (AHLs)—inter-kingdom signalling molecules—synthesis, structural studies, and interactions with model lipid membranes

  • Dorota Jakubczyk
  • Christoph Barth
  • Adam Kubas
  • Frances Anastassacos
  • Patrick Koelsch
  • Karin Fink
  • Ute Schepers
  • Gerald Brenner-WeißEmail author
  • Stefan BräseEmail author
Original Paper

Abstract

N-Acyl-l-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-l-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum’s acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein.

Figure

Figure Deuterium labelled N-acyl-l-homoserine lactones (AHLs) were synthesized in 2 steps. The combination of theoretical and experimental IR and Raman spectroscopy enables identification of most probable structures of AHLs. The integration of the deuterated AHLs in model lipid membranes (supported lipid bilayers) was further investigated using sum-frequency-generation (SFG) spectroscopy, to mimic interactions between AHL and cell membranes

Keywords

Inter-kingdom signalling Deuterium-labelled AHLs DFT modelling Geometry optimization Supported lipid bilayers (SLBs) Sum-frequency-generation (SFG) spectroscopy 

Abbreviations

3OC8-d9-HSL

N-(3-Oxooctanoyl-d 9)-l-homoserine lactone

3OC12-d17-HSL

N-(3-Oxododecanoyl-d 17)-l-homoserine lactone

3OC14-d21-HSL

N-(3-Oxotetradecanoyl-d 21)-l-homoserine lactone

AHLs

N-Acyl-l-homoserine lactones

DFT

Density functional theory

ESI-TOF MS

Electrospray ionization time-of-flight mass spectrometry

ESI-MS/MS

Electrospray ionization tandem mass spectrometry

HRMS

High-resolution mass spectrometry

IR

Infrared spectroscopy

QCM-D

Quartz crystal microbalance with dissipation

SFG

Sum-frequency-generation

SLBs

Supported lipid bilayers

TLC

Thin-layer chromatography

Notes

Acknowledgements

Financial support from the Helmholtz program Bio-interfaces is gratefully acknowledged. A.K. and K.F. were supported by the DFG-funded transregional collaborative research centre SFB/TRR 88 “3MET”. We thank Stefan Heissler from Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) for help with IR and Raman spectra acquisition. P.K. and C.B. thank Sofia Svedhem from Chalmers University of Technology for help with QCM-D and SLB preparation as well as Michael Grunze for his support.

References

  1. 1.
    Schuster M, Greenberg EP (2006) Int J Med Microbiol 296:73CrossRefGoogle Scholar
  2. 2.
    Amara N, Mashiach R, Amar D, Krief P, Spieser SAH, Bottomley MJ, Aharoni A, Meijler MM (2009) J Am Chem Soc 131:10610CrossRefGoogle Scholar
  3. 3.
    Boyer M, Wisniewski-Dye F (2009) FEMS Microbiol Ecol 70:1CrossRefGoogle Scholar
  4. 4.
    Ni N, Li M, Wang J, Wang B (2009) Med Res Rev 29:65CrossRefGoogle Scholar
  5. 5.
    Chhabra SR, Harty C, Hooi DS, Daykin M, Williams P, Telford G, Pritchard DI, Bycroft BW (2003) J Med Chem 46:97CrossRefGoogle Scholar
  6. 6.
    Olsen JA, Severinsen R, Rasmussen TB, Hentzer M, Givskov M, Nielsen J (2002) Bioorg Med Chem Lett 12:325CrossRefGoogle Scholar
  7. 7.
    Costerton JW, Stewart PS, Greenberg EP (1999) Science 284:1318CrossRefGoogle Scholar
  8. 8.
    Cooley M, Chhabra SR, Williams P (2008) Chem Biol 15:1141CrossRefGoogle Scholar
  9. 9.
    Rumbaugh KP, Griswold JA, Hamood AN (2000) Microbes Infect 2:1721CrossRefGoogle Scholar
  10. 10.
    Hughes DT, Sperandio V (2008) Nat Rev Microbiol 6:111CrossRefGoogle Scholar
  11. 11.
    Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H, Stewart GSAB, Bycroft BW, Pritchard DI (1998) Infect Immun 66:36Google Scholar
  12. 12.
    Ritchie AJ, Yam AO, Tanabe KM, Rice SA, Cooley MA (2003) Infect Immun 71:4421CrossRefGoogle Scholar
  13. 13.
    Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, Standiford TJ, Ishiguro M, Yamaguchi K (2003) Infect Immun 71:5785CrossRefGoogle Scholar
  14. 14.
    Zimmermann S, Wagner C, Muller W, Brenner-Weiss G, Hug F, Prior B, Obst U, Hansch GM (2006) Infect Immun 74:5687CrossRefGoogle Scholar
  15. 15.
    Heit B, Tavener S, Raharjo E, Kubes P (2002) J Cell Biol 159:91CrossRefGoogle Scholar
  16. 16.
    Ritchie AJ, Whittall C, Lazenby JJ, Chhabra SR, Pritchard DI, Cooley MA (2007) Immunol Cell Biol 85:596CrossRefGoogle Scholar
  17. 17.
    Davis BM, Jensen R, Williams P, O’Shea P (2010) PLoS ONE 5:e13522CrossRefGoogle Scholar
  18. 18.
    Franken PA, Hill AE, Peters CW, Weinreich G (1961) Phys Rev Lett 7:118CrossRefGoogle Scholar
  19. 19.
    Chen X, Chen Z (2006) Biochim Biophys Acta 1758:1257CrossRefGoogle Scholar
  20. 20.
    Liu J, Conboy JC (2004) J Am Chem Soc 126:8894CrossRefGoogle Scholar
  21. 21.
    Liu J, Conboy JC (2004) J Am Chem Soc 126:8376CrossRefGoogle Scholar
  22. 22.
    Chen X, Wang J, Boughton AP, Kristalyn CB, Chen Z (2007) J Am Chem Soc 129:1420CrossRefGoogle Scholar
  23. 23.
    Chen X, Wang J, Kristalyn CB, Chen Z (2007) Biophys J 93:866CrossRefGoogle Scholar
  24. 24.
    Verreault D, Kurz V, Howell C, Koelsch P (2010) Rev Sci Instrum 81:063111CrossRefGoogle Scholar
  25. 25.
    Chhabra SR, Stead P, Bainton NJ, Salmond GP, Stewart GS, Williams P, Bycroft BW (1993) J Antibiot (Tokyo) 46:441CrossRefGoogle Scholar
  26. 26.
    Dekhane M, Douglas KT, Gilbert P (1996) Tetrahedron Lett 37:1883CrossRefGoogle Scholar
  27. 27.
    Dubinsky L, Jarosz LM, Amara N, Krief P, Kravchenko VV, Krom BP, Meijler MM (2009) Chem Commun (Camb):7378Google Scholar
  28. 28.
    Yajima A, van Brussel AAN, Schripsema J, Nukada T, Yabuta G (2008) Org Lett 10:2047CrossRefGoogle Scholar
  29. 29.
    Thiel V, Kunze B, Verma P, Wagner-Dobler I, Schulz S (2009) ChemBioChem 10:1861CrossRefGoogle Scholar
  30. 30.
    Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GPC, Stewart GSAB, Williams P (1992) Biochem J 288(Pt 3):997Google Scholar
  31. 31.
    Kai K, Tani A, Hayashi H (2010) Bioorg Med Chem 18:3776CrossRefGoogle Scholar
  32. 32.
    Gould TA, Herman J, Krank J, Murphy RC, Churchill MEA (2006) J Bacteriol 188:773CrossRefGoogle Scholar
  33. 33.
    Wang Q, Liu L, Lin C, Sun H, Zhang WX, Xi Z (2009) Dalton Trans:10433Google Scholar
  34. 34.
    Durazo A, Abu-Omar MM (2002) Chem Commun (Camb):66Google Scholar
  35. 35.
    Merck E (1974) Dyeing reagents for thin layer and paper chromatography. Merck, DarmstadtGoogle Scholar
  36. 36.
    Lagutchev A, Hambir SA, Dlott DD (2007) Phys Chemistry Lett C 111:13645CrossRefGoogle Scholar
  37. 37.
    Dirac PAM (1929) Proc Royal Soc A123:714CrossRefGoogle Scholar
  38. 38.
    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785CrossRefGoogle Scholar
  39. 39.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  40. 40.
    Hellweg A, Hättig C, Höfener S, Klopper W (2007) Theor Chem Acc 117:587CrossRefGoogle Scholar
  41. 41.
    Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175CrossRefGoogle Scholar
  42. 42.
    Turbomole V6.3 (2011) A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH -, TURBOMOLE GmbH s (2011) Turbomole V6.3, www.turbomole.com
  43. 43.
    van Wüllen C (2011) J Comput Chem 32:1195CrossRefGoogle Scholar
  44. 44.
    Johnson RDI (2011) Computational chemistry comparison and benchmark database, NIST Standard Reference Database Number 101, Release 15b, http://cccbdb.nist.gov/
  45. 45.
    Schaftenaar G, Noordik JH (2000) J Comput Aided Mol Des 14:123CrossRefGoogle Scholar
  46. 46.
    Cramer CJ (2006) Essentials of computational chemistry. Wiley, ChichesterGoogle Scholar
  47. 47.
    Balabin RM (2008) J Chem Phys 129:164101CrossRefGoogle Scholar
  48. 48.
    Balabin RM (2011) Mol Phys 109:943CrossRefGoogle Scholar
  49. 49.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  50. 50.
    Klopper W, Manby FR, Ten-no S, Valeev EF (2006) Int Rev Phys Chem 25:427CrossRefGoogle Scholar
  51. 51.
    Grimme S (2003) J Chem Phys 118:9095CrossRefGoogle Scholar
  52. 52.
    Hättig C, Klopper W, Köhn A, Tew DP (2012) Chem Rev 112:4CrossRefGoogle Scholar
  53. 53.
    Bachorz RA, Bischoff FA, Glöß A, Hättig C, Höfener S, Klopper W, Tew DP (2011) J Comput Chem 32:2492CrossRefGoogle Scholar
  54. 54.
    Peterson KA, Adler TB, Werner HJ (2008) J Chem Phys 128:084102CrossRefGoogle Scholar
  55. 55.
    Yousaf KE, Peterson KA (2008) J Chem Phys 129:184108CrossRefGoogle Scholar
  56. 56.
    Hättig C (2005) Phys Chem Chem Phys 7:59CrossRefGoogle Scholar
  57. 57.
    Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143CrossRefGoogle Scholar
  58. 58.
    The NMR spectra are in accordance with the literature: [5, 30]Google Scholar
  59. 59.
    IR spectra and [α]D20 values are in accordance with the literature: (a) Geske GD, Wezeman RJ, Siegel AP, Blackwell HE (2005) J Am Chem Soc 127:12762; (b) Pomini AM, Marsaioli AJ (2008) J Nat Prod 71:1032Google Scholar
  60. 60.
    Raman spectra are in accordance with the literature: (a) Mayo DW, Miller FA, Hannah RW (2004) Course notes on the interpretation of infrared and raman spectra. John Wiley & Sons, Ltd, Chichester (b) Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. Wiley, ChichesterGoogle Scholar
  61. 61.
    Thomas GL, Bohner CM, Williams HE, Walsh CM, Ladlow M, Welch M, Bryant CE, Spring DR (2006) Mol Biosyst 2:132CrossRefGoogle Scholar
  62. 62.
    Sundh M, Sofia S, Duncan SS (2010) Phys Chem Chem Phys 12:453CrossRefGoogle Scholar
  63. 63.
    Maibaum J, Rich DH (1989) J Med Chem 32:1571CrossRefGoogle Scholar
  64. 64.
    Vogiatzis KD, Mavrandonakis A, Klopper W, Froudakis GE (2009) ChemPhysChem 10:374CrossRefGoogle Scholar
  65. 65.
    Grimme S (2006) Angew Chem Int Ed 118:4571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Dorota Jakubczyk
    • 1
    • 2
  • Christoph Barth
    • 3
  • Adam Kubas
    • 4
  • Frances Anastassacos
    • 3
  • Patrick Koelsch
    • 3
  • Karin Fink
    • 4
  • Ute Schepers
    • 3
  • Gerald Brenner-Weiß
    • 2
    Email author
  • Stefan Bräse
    • 1
    Email author
  1. 1.Karlsruhe Institute of TechnologyInstitute of Organic ChemistryKarlsruheGermany
  2. 2.Karlsruhe Institute of TechnologyInstitute of Functional InterfacesEggenstein-LeopoldshafenGermany
  3. 3.Karlsruhe Institute of TechnologyInstitute of Toxicology and GeneticsEggenstein-LeopoldshafenGermany
  4. 4.Karlsruhe Institute of TechnologyInstitute of NanotechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations