Analytical and Bioanalytical Chemistry

, Volume 402, Issue 9, pp 2737–2748 | Cite as

Chromatography, mass spectrometry, and molecular modeling studies on ammodytoxins

  • Marija Brgles
  • Branimir Bertoša
  • Wolfgang Winkler
  • Tihana Kurtović
  • Günter Allmaier
  • Martina Marchetti-Deschmann
  • Beata Halassy
Original Paper

Abstract

The ammodytoxins (Atxs) are neurotoxic phospholipases which occur in Vipera ammodytes ammodytes (Vaa) snake venom. There are three Atx isoforms, A, B, and C, which differ in only five amino acid positions at the C-terminus but differ substantially in their toxicity. The objective of this study was to establish an analytical method for unambiguous identification of all three isoforms and to use the method to assess a procedure for purification of the most toxic phospholipase, AtxA, from the venom. Isolation procedure for AtxA consisted of isolation of Atx-cross-reactive material (proteins recognized by anti-Atx antibodies), by use of an affinity column, then cation exchange on CIM (Convective Interaction Media) disks. The purification procedure was monitored by means of reversed-phase chromatography (RPC) and mass spectrometry (MS). Although previous cation exchange of the pure isoforms enabled separate elution of AtxA from B and C, separation of AtxA from Atxs mixture was not accomplished. RPC was not able to separate the Atx isoforms, whereas an MS based approach proved to be more powerful. Peptides resulting from tryptic digestion of Atxs which enable differentiation between the three isoforms were successfully detected and their sequences were confirmed by post-source decay (PSD) fragmentation. Separation of Atx isoforms by ion-exchange chromatography is most presumably prevented by Atxs heterodimer formation. The tendency of Atxs to form homodimers and heterodimers of similar stability was confirmed by molecular modeling.

Keywords

Ammodytoxin (Atx) MALDI mass spectrometry Molecular modeling Chromatography Convective Interaction Media (CIM) 

Supplementary material

216_2012_5754_MOESM1_ESM.pdf (315 kb)
ESM 1(PDF 314 kb)

References

  1. 1.
    Petan T, Krizaj I, Gelb MH, Pungercar J (2005) Ammodytoxins, potent presynaptic neurotoxins, are also highly efficient phospholipase A2 enzymes. Biochemistry 44:12535–12545CrossRefGoogle Scholar
  2. 2.
    Halassy B, Habjanec L, Brgles M, Lang Balija M, Leonardi A, Kovačić L, Prijatelj P, Tomašić J, Križaj I (2008) The role of antibodies specific for toxix sPLA2s and haemorrhagins in neutralizing potential of antisera raised against Vipera ammodytes ammodytes venom. Comp Biochem Physiol, Part C: Toxicol Pharmacol 148:178–183CrossRefGoogle Scholar
  3. 3.
    Ritonja A, Ferlan I, Gubenšek F (1978) Initial studies of the primary structure of lethal phospholipase A from Vipera ammodytes venom. Period Biol 80(suppl 1):37–43Google Scholar
  4. 4.
    Krizaj I (2011) Ammodytoxin: A window into understanding presynaptic toxicity of secreted phospholipases A2 and more. Toxicon 58:219–229CrossRefGoogle Scholar
  5. 5.
    Brgles M, Kurtović T, Halassy B, Allmaier G, Marchetti-Deschmann M (2011) Studying disulfide bond rearrangement by MALDI-RTOF PSD and MALDI-TOF/RTOF high-energy CID (20 keV) experiments of peptides derived from ammodytoxins. J Mass Spectrom 46:153–162CrossRefGoogle Scholar
  6. 6.
    Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79CrossRefGoogle Scholar
  7. 7.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefGoogle Scholar
  8. 8.
    Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295CrossRefGoogle Scholar
  9. 9.
    de Hoffmann E, Stroobant V (2007) Mass spectrometry, principles and applications, 3rd edn. Wiley, ChichesterGoogle Scholar
  10. 10.
    Kratzer R, Eckerskorn C, Karas M, Lottspeich F (1998) Suppression effects in enzymatic peptide ladder sequencing using ultraviolet - matrix assisted laser desorption/ionization - mass spectrometry. Electrophoresis 19:1910–1919CrossRefGoogle Scholar
  11. 11.
    Cohen SL, Chait BT (1996) Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem 68:31–37CrossRefGoogle Scholar
  12. 12.
    Krause E, Wenschuh H, Jungblut PR (1999) The Dominance of Arginine-Containing Peptides in MALDI-Derived Tryptic Mass Fingerprints of Proteins. Anal Chem 71:4160–4165CrossRefGoogle Scholar
  13. 13.
    Shigeri Y, Fujii S, Obana R, Hagihara Y, Jitosho M, Kawasaki H, Arakawa R (2009) Ionization efficiency of α-helical peptides in laser desorption/ionization mass spectrometry. J Mass Spectrom 44:1119–1123CrossRefGoogle Scholar
  14. 14.
    Baumgart S, Lindner Y, Kühne R, Oberemm A, Wenschuh H, Krause E (2004) The contributions of specific amino acid side chains to signal intensities of peptides in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 18:863–868CrossRefGoogle Scholar
  15. 15.
    Saul FA, Prijatelj-Znidarsic P, Vulliez-le Normand B, Villette B, Raynal B, Pungercar J, Krizaj I, Faure G (2009) Comparative structural studies of two natural isoforms of ammodytoxin, phospholipases A2 from Vipera ammodytes ammodytes which differ in neurotoxicity and anticoagulant activity. J Struct Biol 169:360–369CrossRefGoogle Scholar
  16. 16.
    Bertoša B, Kojić-Prodić B, Wade RC, Tomić S (2008) Mechanism of Auxin Interaction with Auxin Binding Protein (ABP1): A Molecular Dynamics Simulation Study. Biophys J 94:27–37CrossRefGoogle Scholar
  17. 17.
    Musiani F, Bertoša B, Magistrato A, Zambelli B, Turano P, Losasso V, Micheletti C, Ciurli S, Carloni P (2010) Computational Study of the DNA-Binding Protein Helicobacter pylori NikR: The Role of Ni2+. J Chem Theory Comput 6:3503–3515CrossRefGoogle Scholar
  18. 18.
    Tomić S, Bertoša B, Wang T, Wade RC (2007) COMBINE Analysis of the Specificity of Binding of Ras Proteins to their Effectors. Proteins: Struct, Funct, Bioinf 67:435–447CrossRefGoogle Scholar
  19. 19.
    Ehresmann B, Imbault P, Weil JH (1973) Spectrophotometric determination of protein concentration in cell extracts containing tRNA's and rRNA's. Anal Biochem 54:454–463CrossRefGoogle Scholar
  20. 20.
    Strohalm M, Kavan D, Novak P, Volny M, Havlicek V (2010) mmol L−1ass 3: A Cross-Platform Software Environment for Precise Analysis of Mass Spectrometric Data. Anal Chem 82:4648–4651CrossRefGoogle Scholar
  21. 21.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Dana Bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  22. 22.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22:195–201CrossRefGoogle Scholar
  23. 23.
    Maestro S (2009) LLC. New York, NYGoogle Scholar
  24. 24.
    Vriend G (1990) WHAT IF: A molecular modeling and drug design program. J Mol Graph 8:52–56CrossRefGoogle Scholar
  25. 25.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San FranciscoGoogle Scholar
  26. 26.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725CrossRefGoogle Scholar
  27. 27.
    Jorgensen WL, Chandrasekhar J, Madura J, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  28. 28.
    Smith DE, Dang LX (1994) Computer-simulations of NaCl Association in Polarizable Water. J Chem Phys 100:3757–3766CrossRefGoogle Scholar
  29. 29.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  30. 30.
    van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: Fast, Flexible and Free. J Comp Chem 26:1701–1718CrossRefGoogle Scholar
  31. 31.
    Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797CrossRefGoogle Scholar
  32. 32.
    Reynolds C, Damerell D, Jones S (2009) Protorp: a protein-protein interaction analysis tool. Bioinformatics 25:413–414CrossRefGoogle Scholar
  33. 33.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041CrossRefGoogle Scholar
  34. 34.
    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132CrossRefGoogle Scholar
  35. 35.
    Halassy B, Brgles M, Habjanec L, Lang Balija M, Tomašić J, Križaj I, Štrancar A, Barut M (2008) Use of convective interaction media for analysis of long-nosed viper venom. J Liquid Chromatogr Rel Technol 31:38–53CrossRefGoogle Scholar
  36. 36.
    Abarca D, Madueño F, Martínez-Zapater JM, Salinas J (1999) Dimerization of Arabidopsis 14-3-3 proteins: structural requirements within the N-terminal domain and effect of calcium. FEBS Lett 462:377–382CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marija Brgles
    • 1
  • Branimir Bertoša
    • 2
  • Wolfgang Winkler
    • 3
  • Tihana Kurtović
    • 1
  • Günter Allmaier
    • 3
  • Martina Marchetti-Deschmann
    • 3
  • Beata Halassy
    • 1
  1. 1.Institute of ImmunologyZagrebCroatia
  2. 2.Rudjer Bošković InstituteZagrebCroatia
  3. 3.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria

Personalised recommendations