Analytical and Bioanalytical Chemistry

, Volume 403, Issue 8, pp 2279–2289

LC-MS/MS biopharmaceutical glycoanalysis: identification of desirable reference material characteristics

  • John E. Schiel
  • Jennifer Au
  • Hua-Jun He
  • Karen W. Phinney
Original Paper

Abstract

Glycosylation, the enzymatic addition of carbohydrates to a protein, is one of the most abundant post-translational modifications found in nature. There is variability in the number, location, and identity of glycans attached. As a result, a glycoprotein consists of a number of glycoforms with different combinations of glycans, potentially resulting in different stability, toxicity, and activity. This is especially important in the biopharmaceutical industry where product consistency and safety are vital. Glycoprotein analysis involves numerous mass spectrometry based techniques, each of which provides various aspects of characterization. The current paper describes two commonly used analytical techniques for glycoprotein characterization. In one experiment, nonspecific proteolysis is combined with a two-tiered mass spectrometry approach (MALDI-TOF and LC-MS/MS) to gain glycosylation site and glycan identity. In a second approach, glycans were enzymatically released, labeled with a fluorescent dye, and analyzed using LC-Fluorescence-MS/MS to give glycan identification and relative quantification. The type and degree of information yielded by each method is assessed in an effort to identify desired reference material characteristics for improving biopharmaceutical glycoanalysis.

Keywords

Biopharmaceutical Glycoprotein Glycan Mass spectrometry Standards Reference material 

Supplementary material

216_2012_5749_MOESM1_ESM.pdf (1019 kb)
ESM 1(PDF 304 kb)

Reference

  1. 1.
    Stanley P, Schachter H, Taniguchi N (2010) N-glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (ed) Essentials of glycobiology, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Springs HarborGoogle Scholar
  2. 2.
    Higgens E (2010) Glycoconjug J 27:211–225CrossRefGoogle Scholar
  3. 3.
    Kawasaki N, Itoh S, Hashii N, Takakura D, Qin Y, Huang XY, Yamaguchi T (2009) Biol Pharm Bull 32:796–800CrossRefGoogle Scholar
  4. 4.
    van Berkel PHC, Gerritsen J, Perdok G, Valbjorn J, Vink T, van de Winkel JGJ, Parren PWHI (2009) Biotech Prog 25:244–251CrossRefGoogle Scholar
  5. 5.
    Kamoda S, Nomura C, Kinoshita M, Nishiura S, Ishikawa R, Kakehi K, Kawasaki N, Hayakawa T (2004) J Chromatogr A 1050:211–216Google Scholar
  6. 6.
    Kamoda S, Ishikawa R, Kakehi K (2006) J Chromatogr A 1133:332–339CrossRefGoogle Scholar
  7. 7.
    Ma S, Nashabeh W (1999) Anal Chem 71:5185–5192CrossRefGoogle Scholar
  8. 8.
    Prater BD, Connelly HM, Qin Q, Cockrill SL (2009) Anal Biochem 385:69–79CrossRefGoogle Scholar
  9. 9.
    Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F (2008) Proteomics 8:2858–2871CrossRefGoogle Scholar
  10. 10.
    Wuhrer M, Deelder AM, Hokke CH (2005) J Chromatogr B 825:124–133CrossRefGoogle Scholar
  11. 11.
    Huhn C, Selman MHJ, Ruhaak LR, Deelder AM, Wuhrer M (2009) Proteomics 9:882–913CrossRefGoogle Scholar
  12. 12.
    An HJ, Peavy TR, Hedrick JL, Lebrilla CB (2003) Anal Chem 75:5628–5637CrossRefGoogle Scholar
  13. 13.
    An HJ, Tillinghast JS, Woodruff DL, Rocke DM, Lebrilla CB (2006) J Proteome Res 5:2800–2808CrossRefGoogle Scholar
  14. 14.
    An HJ, Froehlich JW, Lebrilla CB (2009) Curr Opin Chem Biol 13:421–426CrossRefGoogle Scholar
  15. 15.
    Clowers BH, Dodds ED, Seipert RR, Lebrilla CB (2007) J Proteome Res 6:4032–4040CrossRefGoogle Scholar
  16. 16.
    Dodds ED, Seipert RR, Clowers BH, German JB, Lebrilla CB (2009) J Proteome Res 8:502–512CrossRefGoogle Scholar
  17. 17.
    Yu YQ, Fournier J, Gilar M, Gebler JC (2007) Anal Chem 79:1731–1738CrossRefGoogle Scholar
  18. 18.
    Juhasz P, Martin SA (1997) Int J Mass Spectrom 169:217–230CrossRefGoogle Scholar
  19. 19.
    Liu X, McNally DJ, Nothaft H, Szymanski CM, Brisson JR, Li JJ (2006) Anal Chem 78:6081–6087CrossRefGoogle Scholar
  20. 20.
    Liu X, Chan K, Chu IK, Li JJ (2008) Carb Res 343:2870–2877CrossRefGoogle Scholar
  21. 21.
    Temporini C, Perani E, Calleri E, Dolcini L, Lubda D, Caccialanza G, Massolini G (2007) Anal Chem 79:355–363CrossRefGoogle Scholar
  22. 22.
    Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM (2005) Anal Chem 77:886–894CrossRefGoogle Scholar
  23. 23.
    Zauner G, Koeleman CAM, Deelder AM, Wuhrer M (2010) J Sep Sci 33:903–910CrossRefGoogle Scholar
  24. 24.
    Nwosu CC, Seipert RR, Strum JS, Hua SS, Zivkovic AM, German BJ, Lebrilla CB (2011) J Proteome Res 10:2612–2624CrossRefGoogle Scholar
  25. 25.
    Nwosu CC, Seipert RR, Strum JS, Hua SS, An HJ, Zivkovic AM, German BJ, Lebrilla CB (2011) J Proteome Res 10:2612–2624CrossRefGoogle Scholar
  26. 26.
    Hua S, Nwosu CC, Strum JS, Seipert RR, An HJ, Zivkovic AM, German BJ, Lebrilla CB (2011) Anal Bioanal Chem. doi:10.1007/s00216-011-5109-x
  27. 27.
    Chen XY, Flynn GC (2007) Anal Biochem 370:147–161CrossRefGoogle Scholar
  28. 28.
    Flynn GC, Chen XY, Liu YD, Shah B, Zhang ZQ (2010) Mol Immunol 47:2074–2082CrossRefGoogle Scholar
  29. 29.
    Ito H, Takegawa Y, Deguchi K, Nagai S, Nakagawa H, Shinohara Y, Nishimura SI (2006) Rapid Commun Mass Spectrom 20:3557–3565CrossRefGoogle Scholar
  30. 30.
    Takegawa Y, Deguchi K, Ito S, Yoshioka S, Sano A, Yoshinari K, Kobayashi K, Nakagawa H, Monde K, Nishimura SI (2004) Anal Chem 76:7294–7303CrossRefGoogle Scholar
  31. 31.
    Takegawa Y, Ito S, Yoshioka S, Deguchi K, Nakagawa H, Monde K, Nishimura SI (2004) Rapid Commun Mass Spectrom 18:385–391CrossRefGoogle Scholar
  32. 32.
    Reinhold V, Ashline DJ, Zhang H (2010) Unraveling the structural details of the glycoproteome by ion trap mass spectrometry. In: Practical aspects trapped ion mass spectrometry. Taylor and Francis, Boca RatonGoogle Scholar
  33. 33.
    Huang W, Li C, Li B, Umekawa M, Yamamoto K, Zhang X, Wang LX (2009) J Am Chem Soc 131:2214–2223CrossRefGoogle Scholar
  34. 34.
    Huang W, Yang QA, Umekawa M, Yamamoto K, Wang LX (2010) Chembiochem 11:1350–1355CrossRefGoogle Scholar
  35. 35.
    Schiel JE, Lowenthal MS, Phinney KW (2011) J Mass Spectrom 46:649–657CrossRefGoogle Scholar
  36. 36.
    de Leoz ML, Young LJ, An HJ, Kronewitter SR, Kim J, Miyamoto S, Borowsky AD, Chew HK, Lebrilla CB (2011) High-mannose glycans are elevated during breast cancer progression. Mol Cell Proteom 10(1). doi:10.1074/mcp.M110.002717
  37. 37.
    Ivancic MM, Gadgil HS, Halsall HB, Treuheit MJ (2010) Anal Biochem 400:25–32CrossRefGoogle Scholar
  38. 38.
    Rebecchi KR, Wenke JL, Go EP, Desaire H (2009) J Am Soc Mass Spectrom 20:1048–1059CrossRefGoogle Scholar
  39. 39.
    Atwood JA, Cheng L, Alvarez-Manilla G, Warren NL, York WS, Orlando R (2008) J Proteome Res 7:367–374CrossRefGoogle Scholar
  40. 40.
    Orlando R, Lim JM, Atwood JA, Angel PM, Fang M, Aoki K, Alvarez-Manilla G, Moremen KW, York WS, Tiemeyer M, Pierce M, Dalton S, Wells L (2009) J Proteome Res 8:3816–3823CrossRefGoogle Scholar
  41. 41.
    Zhang P, Zhang Y, Xue XD, Wang CJ, Wang ZF, Huang LJ (2011) Anal Biochem 418:1–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • John E. Schiel
    • 1
  • Jennifer Au
    • 1
  • Hua-Jun He
    • 1
  • Karen W. Phinney
    • 1
  1. 1.National Institute of Standards and TechnologyAnalytical Chemistry DivisionGaithersburgUSA

Personalised recommendations