Advertisement

Analytical and Bioanalytical Chemistry

, Volume 402, Issue 9, pp 2817–2826 | Cite as

A label-free electrochemical DNA biosensor based on a Zr(IV)-coordinated DNA duplex immobilised on a carbon nanofibre|chitosan layer

  • Patoommarn Wipawakarn
  • Huangxian Ju
  • Danny K. Y. Wong
Original Paper

Abstract

A label-free electrochemical biosensor for detecting DNA hybridisation was developed by monitoring the change in the voltammetric activity of ferrocenecarboxylic acid at the biosensor–solution interface. The biosensor was constructed by initially immobilising on a glassy carbon electrode an anchoring layer consisting of chitosan, carboxyl group functionalised carbon nanofibres and glutaraldehye. Chitosan acted as an adhering agent and carbon nanofibres were strategically used to provide a large surface area with binding points for DNA immobilisation, while glutaraldehye was a linker for DNA probes on the electrode surface. Based on a two-factorial design, cyclic voltammetry of [Fe(CN)6]3−/4− was performed to optimise the composition of the anchoring layer. Next, a 17-base pair DNA probe was attached to the anchoring layer, followed by its complementary target. Zr(IV) ion, known to exhibit affinity for oxygen-containing electroactive markers, for example, ferrocenecarboxylic acid, was then coordinated in the DNA duplex. In this way, ferrocenecarboxylic acid was attracted towards the biosensor for oxidation. A change in the voltammetric oxidation current of ferrocenecarboxylic acid pre- and post-hybridisation was used to provide an indication of hybridisation. A linear dynamic range between 0.5 and 40 nM and a detection limit of 88 pM of DNA target were then achieved. In addition, the biosensor exhibited good selectivity, repeatability and stability for the determination of DNA sequences.

Keywords

Electrochemical DNA sensor Label-free detection Zr(IV)-coordinated DNA duplex Carbon nanofibre Chitosan 

References

  1. 1.
    Erdem A, Ozsoz M (2001) Interaction of the anticancer drug epirubicin with DNA. Anal Chim Acta 437(1):107–114CrossRefGoogle Scholar
  2. 2.
    Evtugyn G, Goldfarb O, Budnikov H, Ivanov A, Vinter V (2005) Amperometric DNA-peroxidase sensor for the detection of pharmaceutical preparations. Sensors 5(6):364–376CrossRefGoogle Scholar
  3. 3.
    Liao JC, Mastali M, Gau V, Suchard MA, Moller AK, Bruckner DA, Babbitt JT, Li Y, Gornbein J, Landaw EM, McCabe ERB, Churchill BM, Haake DA (2006) Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J Clin Microbiol 44(2):561–570CrossRefGoogle Scholar
  4. 4.
    Mandong G, Yanqing L, Hongxia G, Xiaoqin W, Lifang F (2007) Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE. Bioelectrochemistry 70(2):245–249CrossRefGoogle Scholar
  5. 5.
    Chang Z, Chen M, Fan H, Zhao K, Zhuang S, He P, Fang Y (2008) Multilayer membranes via layer-by-layer deposition of PDDA and DNA with Au nanoparticles as tags for DNA biosensing. Electrochim Acta 53(6):2939–2945CrossRefGoogle Scholar
  6. 6.
    Divne A-M, Allen M (2005) A DNA microarray system for forensic SNP analysis. Forensic Sci Int 154(2–3):111–121CrossRefGoogle Scholar
  7. 7.
    Zhao X, Tapec-Dytioco R, Tan W (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125(38):11474–11475CrossRefGoogle Scholar
  8. 8.
    Miao W, Bard AJ (2004) Electrogenerated chemiluminescence. 77. DNA hybridisation detection at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal Chem 76(18):5379–5386CrossRefGoogle Scholar
  9. 9.
    Okahata Y, Kawase M, Niikura K, Ohtake F, Furusawa H, Ebara Y (1998) Kinetic measurements of DNA hybridisation on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Anal Chem 70(7):1288–1296CrossRefGoogle Scholar
  10. 10.
    Sun HB, Yokota H (2000) MutS-mediated detection of DNA mismatches using atomic force microscopy. Anal Chem 72(14):3138–3141CrossRefGoogle Scholar
  11. 11.
    Guedon P, Livache T, Martin F, Lesbre F, Roget A, Bidan G, Levy Y (2000) Characterisation and optimisation of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal Chem 72(24):6003–6009CrossRefGoogle Scholar
  12. 12.
    Liu T, Ja T, Jiang L (2004) The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem Biophys Res Commun 313(1):3–7CrossRefGoogle Scholar
  13. 13.
    Lucarelli F, Tombelli S, Minunni M, Marrazza G, Mascini M (2008) Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal Chim Acta 609(2):139–159CrossRefGoogle Scholar
  14. 14.
    Zhu N, Chang Z, He P, Fang Y (2005) Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Anal Chim Acta 545(1):21–26CrossRefGoogle Scholar
  15. 15.
    Dharuman V, Hahn JH (2008) Label free electrochemical DNA hybridisation discrimination effects at the binary and ternary mixed monolayers of single stranded DNA/diluent/s in presence of cationic intercalators. Biosens Bioelectron 23(8):1250–1258CrossRefGoogle Scholar
  16. 16.
    Carrara S, Gurkaynak F, Guiducci C, Stagni C, Benini L, Leblebici Y, Samorì B, De Micheli G (2007) Interface layering phenomena in capacitance detection of DNA with biochips. Sens Trans J 76:969–977Google Scholar
  17. 17.
    Park J-Y, Park S-M (2009) DNA hybridisation sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors 9(12):9513–9532CrossRefGoogle Scholar
  18. 18.
    Loaiza ÓA, Campuzano S, Prada AG-Vd, Pedrero M, Pingarrón JM (2008) Amperometric DNA quantification based on the use of peroxidase-mercaptopropionic acid-modified gold electrodes. Sensors Actuators B Chem 132(1):250–257CrossRefGoogle Scholar
  19. 19.
    Olofsson L, Rindzevicius T, Pfeiffer I, Käll M, Höök F (2003) Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridisation detection. Langmuir 19(24):10414–10419CrossRefGoogle Scholar
  20. 20.
    Li G, Li X, Wan J, Zhang S (2009) Dendrimers-based DNA biosensors for highly sensitive electrochemical detection of DNA hybridisation using reporter probe DNA modified with Au nanoparticles. Biosens Bioelectron 24(11):3281–3287CrossRefGoogle Scholar
  21. 21.
    Gao M, Qi H, Gao Q, Zhang C (2008) Electrochemical detection of DNA hybridisation based on the probe labeled with carbon-nanotubes loaded with silver nanoparticles. Electroanalysis 20(2):123–130CrossRefGoogle Scholar
  22. 22.
    Wang J, Liu G, Rasul Jan M, Zhu Q (2003) Electrochemical detection of DNA hybridisation based on carbon-nanotubes loaded with CdS tags. Electrochem Commun 5(12):1000–1004CrossRefGoogle Scholar
  23. 23.
    Qiu J-D, Zhou W-M, Guo J, Wang R, Liang R-P (2009) Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem 385(2):264–269CrossRefGoogle Scholar
  24. 24.
    Wang J, Kawde A-N, Jan MR (2004) Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridisation. Biosens Bioelectron 20(5):995–1000CrossRefGoogle Scholar
  25. 25.
    Gu CP, Huang JR, Wang JH, Wang CJ, Li MQ, Liu JH (2007) Enhanced electrochemical detection of DNA hybridisation based on Au/MWCNTs nanocomposites. Anal Lett 40(17):3159–3169CrossRefGoogle Scholar
  26. 26.
    Wu L, Zhang X, Ju H (2007) Highly sensitive flow injection detection of hydrogen peroxide with high throughput using a carbon nanofiber-modified electrode. Analyst 132(5):406–408CrossRefGoogle Scholar
  27. 27.
    Wang F, Li D, Li G, Liu X, Dong S (2008) Electrodissolution of inorganic ions/DNA multilayer film for tunable DNA release. Biomacromolecules 9(10):2645–2652CrossRefGoogle Scholar
  28. 28.
    Vamvakaki V, Fouskaki M, Chaniotakis N (2007) Electrochemical biosensing systems based on carbon nanotubes and carbon nanofibers. Anal Lett 40(12):2271–2287CrossRefGoogle Scholar
  29. 29.
    Wang J, Lin Y (2008) Functionalised carbon nanotubes and nanofibers for biosensing applications. TrAC Trends Anal Chem 27(7):619–626CrossRefGoogle Scholar
  30. 30.
    Wu L, McIntosh M, Zhang X, Ju H (2007) Amperometric sensor for ethanol based on one-step electropolymerisation of thionine–carbon nanofiber nanocomposite containing alcohol oxidase. Talanta 74(3):387–392CrossRefGoogle Scholar
  31. 31.
    Hao C, Ding L, Zhang X, Ju H (2007) Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Anal Chem 79(12):4442–4447CrossRefGoogle Scholar
  32. 32.
    Levine PM, Gong P, Levicky R, Shepard KL (2009) Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics. Biosens Bioelectron 24(7):1995–2001CrossRefGoogle Scholar
  33. 33.
    Liao LB, Xiao XM (2006) Electronic detection of DNA utilising ferrocenyl peptide conjugates probe. Sensor Actuators B Chem 115(1):465–472CrossRefGoogle Scholar
  34. 34.
    Vagin MY, Trashin SA, Karyakin AA, Mascini M (2008) Label-free detection of DNA hybridisation at a liquid|liquid interface. Anal Chem 80(4):1336–1340CrossRefGoogle Scholar
  35. 35.
    Fang B, Jiao S, Li M, Qu Y, Jiang X (2008) Label-free electrochemical detection of DNA using ferrocene-containing cationic polythiophene and PNA probes on nanogold modified electrodes. Biosens Bioelectron 23(7):1175–1179CrossRefGoogle Scholar
  36. 36.
    Le Floch F, Ho HA, Harding-Lepage P, Bédard M, Neagu-Plesu R, Leclerc M (2005) Ferrocene-functionalised cationic polythiophene for the label-free electrochemical detection of DNA. Adv Mater 17(10):1251–1254CrossRefGoogle Scholar
  37. 37.
    Anne A, Bouchardon A, Moiroux J (2003) 3′-Ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces: novel model systems for exploring flexibility of short DNA using cyclic voltammetry. J Am Chem Soc 125(5):1112–1113CrossRefGoogle Scholar
  38. 38.
    Okochi M, Ohta H, Tanaka T, Matsunaga T (2005) Electrochemical probe for on-chip type flow immunoassay: immunoglobulin G labeled with ferrocenecarboaldehyde. Biotechnol Bioeng 90(1):14–19CrossRefGoogle Scholar
  39. 39.
    Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. PNAS 100(16):9134–9137CrossRefGoogle Scholar
  40. 40.
    Wang J, Wang F, Xu Z, Wang Y, Dong S (2007) Surface plasmon resonance and electrochemistry characterisation of layer-by-layer self-assembled DNA and Zr4+ thin films, and their interaction with cytochrome c. Talanta 74(1):104–109CrossRefGoogle Scholar
  41. 41.
    Mazur M, Krysiński P, Michota-Kamińska A, Bukowska J, Rogalski J, Blanchard GJ (2007) Immobilisation of laccase on gold, silver and indium tin oxide by zirconium–phosphonate–carboxylate (ZPC) coordination chemistry. Bioelectrochemistry 71(1):15–22CrossRefGoogle Scholar
  42. 42.
    Ge C, Miao W, Ji M, Gu N (2005) Glutaraldehyde-modified electrode for nonlabeling voltammetric detection of p16 INK4A gene. Anal Bioanal Chem 383(4):651–659CrossRefGoogle Scholar
  43. 43.
    Erjavec JLaJ (2001) Modern statistics for engineering and quality improvement. Pacific Grove, CA: Duxbury Chapter 8Google Scholar
  44. 44.
    Olenic L, Mihailescu G, Pruneanu S, Lupu D, Biris A, Margineanu P, Garabagiu S (2009) Investigation of carbon nanofibers as support for bioactive substances. J Mater Sci Mater Med 20(1):177–183CrossRefGoogle Scholar
  45. 45.
    Wang Z, Yang Y, Leng K, Li J, Zheng F, Shen G, Yu R (2008) A sequence–selective electrochemical DNA biosensor based on HRP–labeled probe for colorectal cancer DNA detection. Anal Lett 41(1):24–35CrossRefGoogle Scholar
  46. 46.
    Li F, Chen W, Dong P, Zhang S (2009) A simple strategy of probe DNA immobilisation by diazotisation-coupling on self-assembled 4-aminothiophenol for DNA electrochemical biosensor. Biosens Bioelectron 24(7):2160–2164CrossRefGoogle Scholar
  47. 47.
    Cai S, Lau C, Lu J (2010) Sequence-specific detection of short-length DNA via template-dependent surface-hybridisation events. Anal Chem 82(17):7178–7184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Patoommarn Wipawakarn
    • 1
  • Huangxian Ju
    • 2
  • Danny K. Y. Wong
    • 1
  1. 1.Department of Chemistry and Biomolecular SciencesMacquarie UniversitySydneyAustralia
  2. 2.Key Laboratory of Analytical Chemistry for Life Science (Ministry of Education of China), Department of ChemistryNanjing UniversityNanjingChina

Personalised recommendations