Analytical and Bioanalytical Chemistry

, Volume 402, Issue 6, pp 2183–2193 | Cite as

Physico-chemical characterization of protein–pigment interactions in tempera paint reconstructions: casein/cinnabar and albumin/cinnabar

  • Celia Duce
  • Lisa Ghezzi
  • Massimo Onor
  • Ilaria Bonaduce
  • Maria Perla Colombini
  • Maria Rosaria Tine’
  • Emilia Bramanti
Original Paper

Abstract

In this work, we characterized paint reconstructions using ovalbumin and casein as binders, and cinnabar (HgS) as a pigment, before and after artificial ageing. Egg and casein are common paint binders that were used historically in the technique of tempera painting. Despite extensive research on the identification of proteinaceous binders in paintings, there is a substantial lack of knowledge regarding the ageing pathway of their protein content, and their chemical interaction with inorganic pigments. Thermogravimetric analysis, infrared spectroscopy and size-exclusion chromatography (SEC) were used to reveal the physico-chemical processes involved in the ageing of proteins in paintings. Taken together, the three techniques highlighted that proteins are subject to both cross-linking and hydrolysis upon ageing, and to a lesser extent, to oxidation of the side chains. Mercury–protein interactions were also revealed using a cold vapour generation atomic fluorescence spectrometer mercury-specific detector coupled to SEC. The study clearly showed that HgS forms stable complexes with proteins and acts as a sensitizer in cross-linking, hydrolysis and oxidation.

Figure

A multi-techinque approach to the study of protein/cinnabar tempera paint recontructions: thermogravimetric analysis, Fourier Transform Infrared Spectroscopy and size exclusion chromatography

Keywords

Ovalbumin Casein Cinnabar Protein–pigment interaction Cultural heritage Size-exclusion chromatography Fourier-transform infrared spectroscopy Thermogravimetric analysis 

Supplementary material

216_2011_5684_MOESM1_ESM.pdf (478 kb)
ESM 1 (PDF 477 kb)

References

  1. 1.
    Mills J, and White R (2000) Organic Chemistry of Museum Objects, Second Edition (Conservation and Museology), 2nd ed., Butterworth-Heinemann.Google Scholar
  2. 2.
    Andreotti A, Bonaduce I, Colombini MP, Modugno F, Ribechini E (2008) Characterisation of natural organic materials in paintings by GC/MS analytical procedures. In: Colombini MP, Tassi L (eds) New trends in analytical, environmental and cultural heritage chemistry. Transworld Research Network, Kerala, pp 389–424Google Scholar
  3. 3.
    Tokarski C, Martin E, Rolando C, Cren-Olive C (2006) Identification of proteins in Renaissance paintings by proteomics. Anal Chem 78:1494–1502CrossRefGoogle Scholar
  4. 4.
    Kuckova S, Hynek R, Kodicek M (2009) MALDI-MS applied to the analysis of protein paint binders. In: Colombini MP, Modugno F (eds) Organic mass spectrometry in art and archaeology. Wiley, LondonGoogle Scholar
  5. 5.
    Karpowicz A (1981) Ageing and deterioration of proteinaceous media. Stud Conserv 26:153–160CrossRefGoogle Scholar
  6. 6.
    Osticioli I, Nevin A, Anglos D, Burnstock A, Cather S, Becucci M, Fotakis C, Castellucci E (2008) Micro-Raman and fluorescence spectroscopy for the assessment of the effects of the exposure to light on films of egg white and egg yolk. J Raman Spectrosc 39:307–313CrossRefGoogle Scholar
  7. 7.
    Nevin A, Anglos D, Cather S, Burnstock A (2008) The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media. Appl Phys a-Mater 92:69–76CrossRefGoogle Scholar
  8. 8.
    Leo G, Bonaduce I, Andreotti A, Marino G, Pucci P, Colombini MP, Birolo L (2011) Deamidation at asparagine and glutamine as a major modification upon deterioration/aging of proteinaceous binders in mural paintings. Anal Chem 83:2056–2064CrossRefGoogle Scholar
  9. 9.
    Bonaduce I, Boon JJ (2008) An integrated mass spectrometric and molecular imaging analytical approach to identify and localise constituents in paintings applied to gilded multilayer structures from 14th to 16th C works of art. In: Colombini MP, Tassi L (eds) New trends in analytical, environmental and cultural heritage chemistry. Research Signpost, Transworld Research Network, Kerala (India), pp 389–423Google Scholar
  10. 10.
    Colombini MP, Andreotti A, Bonaduce I, Modugno F, Ribechini E (2010) Analytical strategies for characterizing organic paint media using gas chromatography/mass spectrometry. Accounts Chem Res 43:715–727CrossRefGoogle Scholar
  11. 11.
    Colombini MP, Gautier G (2009) GC/MS in the characterisation of protein paint binders. Wiley, LondonGoogle Scholar
  12. 12.
    Colombini MP, Fuoco R, Giacomelli A, Muscatello B (1998) Characterization of proteinaceous binders in wall painting samples by microwave-assisted acid hydrolysis and GC-MS determination of amino acids. Stud Conserv 43:33–41CrossRefGoogle Scholar
  13. 13.
    Pires J, Cruz AJ (2007) Techniques of thermal analysis applied to the study of cultural heritage. J Therm Anal Calorim 87:411–415CrossRefGoogle Scholar
  14. 14.
    Ciomartan DA, Clark RJH, McDonald LJ, and Odlyha M (1996) Studies on the thermal decomposition of basic lead(II) carbonate by Fourier-transform Raman spectroscopy, X-ray diffraction and thermal analysis. Journal of the Chemical Society-Dalton Transactions: 3639-3645.Google Scholar
  15. 15.
    Cohen NS, Odlyha M, Campana R, Foster GM (2000) Dosimetry of paintings: determination of the degree of chemical change in museum exposed test paintings (lead white tempera) by thermal analysis and infrared spectroscopy. Thermochim Acta 365:45–52CrossRefGoogle Scholar
  16. 16.
    Odlyha M, Cohen NS, Foster GM (2000) Dosimetry of paintings: determination of the degree of chemical change in museum exposed test paintings (smalt tempera) by thermal analysis. Thermochim Acta 365:35–44CrossRefGoogle Scholar
  17. 17.
    Odlyha M, Cohen NS, Foster GM, West RH (2000) Dosimetry of paintings: determination of the degree of chemical change in museum exposed test paintings (azurite tempera) by thermal and spectroscopic analysis. Thermochim Acta 365:53–63CrossRefGoogle Scholar
  18. 18.
    Bonaduce I, Carlyle L, Colombini MP, Duce C, Ferrari C, Ribechini E, Selleri P, and Tiné MR (2011) Journal of Thermal Analysis and Calorimetry.Google Scholar
  19. 19.
    Cavallaro G, Donato DI, Lazzara G, Milioto S (2011) A comparative thermogravimetric study of waterlogged archaeological and sound woods. J Therm Anal Calorim 104:451–457CrossRefGoogle Scholar
  20. 20.
    Fessas D, Signorelli M, Schiraldi A, Kennedy CJ, Wess TJ, Hassel B, Nielsen K (2006) Thermal analysis on parchments I: DSC and TGA combined approach for heat damage assessment. Thermochim Acta 447:30–35CrossRefGoogle Scholar
  21. 21.
    Bramanti E, Lenci F, Sgarbossa A (2010) Effects of hypericin on the structure and aggregation properties of beta-amyloid peptides. Eur Biophys J Biophy 39:1493–1501CrossRefGoogle Scholar
  22. 22.
    Barth A (2007) Infrared spectroscopy of proteins. BBA-Bioenergetics 1767:1073–1101CrossRefGoogle Scholar
  23. 23.
    Qin DZ, Ma XM, Yang L, Zhang L, Ma ZJ, Zhang J (2008) Biomimetic synthesis of HgS nanoparticles in the bovine serum albumin solution. J Nanopart Res 10:559–566CrossRefGoogle Scholar
  24. 24.
    Bramanti E, D'Ulivo A, Lampugnani L, Zamboni R, Raspi G (1999) Application of mercury cold vapor atomic fluorescence spectrometry to the characterization of mercury-accessible –SH groups in native proteins. Anal Biochem 274:163–173CrossRefGoogle Scholar
  25. 25.
    Bramanti E, Lomonte C, Galli A, Onor M, Zamboni R, Raspi G, D'Ulivo A (2004) Characterization of denatured metallothioneins by reversed phase coupled with on-line chemical vapour generation and atomic fluorescence spectrometric detection. J Chromatogr A 1054:285–291Google Scholar
  26. 26.
    Bramanti E, Lomonte C, Onor M, Zamboni R, Raspi G, D'Ulivo A (2004) Study of the disulfide reduction of denatured proteins by liquid chromatography coupled with on-line cold-vapor-generation atomic-fluorescence spectrometry (LC-CVGAFS). Anal Bioanal Chem 380:310–318CrossRefGoogle Scholar
  27. 27.
    Bramanti E, Lucchesini S, D'Ulivo A, Lampugnani L, Zamboni R, Spinetti MC, Raspi G (2001) Selective determination of thiolic proteins by hydrophobic interaction chromatography coupled with on-line cold vapour atomic fluorescence spectrometry. J Anal Atom Spectrom 16:166–171CrossRefGoogle Scholar
  28. 28.
    Bramanti E, Cavallaro R, Onor M, Zamboni R, D'Ulivo A (2008) Determination of thiolic compounds as mercury complexes by cold vapor atomic absorption spectrometry and its application to wines. Talanta 74:936–943CrossRefGoogle Scholar
  29. 29.
    Angeli A, Chen H, Mester Z, Rao Y, D’Ulivo A, Bramanti E (2010) Derivatization of GSSG by pHMB in alkaline media. Determination of oxidized glutathione in blood. Talanta 82:815–820CrossRefGoogle Scholar
  30. 30.
    Bramanti E, D'Ulivo L, Lomonte C, Onor M, Zamboni R, Raspi G, D'Ulivo A (2006) Determination of hydrogen sulfide and volatile thiols in air samples by mercury probe derivatization coupled with liquid chromatography-atomic fluorescence spectrometry. Anal Chim Acta 579:38–46CrossRefGoogle Scholar
  31. 31.
    Bramanti E, Angeli V, Mester Z, Pompella A, Paolicchi A, D'Ulivo A (2010) Determination of S-nitrosoglutathione in plasma: comparison of two methods. Talanta 81:1295–1299CrossRefGoogle Scholar
  32. 32.
    Angeli V, Ferrari C, Longo I, Onor M, D'Ulivo A, Bramanti E (2011) Microwave-assisted photochemical reactor for the online oxidative decomposition and determination of p-hydroxymercurybenzoate and its thiolic complexes by cold vapor generation atomic fluorescence detection. Anal Chem 83:338–343CrossRefGoogle Scholar
  33. 33.
    Bramanti E, D'Ulivo A, Lampugnani L, Raspi G, Zamboni R (1999) Cold vapour atomic fluorescence studies on the behaviour of mercury(II) and mercury(II)-thiol complexes. An alternative route for characterization of –SH binding groups. J Anal Atom Spectrom 14:179–185CrossRefGoogle Scholar
  34. 34.
    Reid RS, Rabenstein DL (1982) Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 19. Formation constants for the complexation of methylmercury by glutathione, ergothioneine, and hemoglobin. J Am Chem Soc 104:6733–6737CrossRefGoogle Scholar
  35. 35.
    Somanathan N, Subramanian V, Mandal AB (1997) Thermal stability of modified caseins. Thermochim Acta 302:47–52CrossRefGoogle Scholar
  36. 36.
    Purevsuren B, Davaajav Y (2001) Thermal analysis of casein. J Therm Anal Calorim 65:147–152CrossRefGoogle Scholar
  37. 37.
    Purevsuren B, Davaajav Y (2001) Investigation on pyrolysis of casein. J Therm Anal Calorim 66:743–748CrossRefGoogle Scholar
  38. 38.
    Kasarda DD, and Black DR (1968) Thermal degradation of proteins studied by mass spectrometry. Biopolymers 6.Google Scholar
  39. 39.
    Haque E, Bhandari BR, Gidley MJ, Deeth HC, Moller SM, Whittaker AK (2010) Protein conformational modifications and kinetics of water–protein interactions in milk protein concentrate powder upon aging: effect on solubility. J Agric Food Chem 58:7748–7755CrossRefGoogle Scholar
  40. 40.
    Nevin A, Osticioli I, Anglos D, Burnstock A, Cather S, Castellucci E (2008) The analysis of naturally and artificially aged protein-based paint media using Raman spectroscopy combined with principal component analysis. J Raman Spectrosc 39:993–1000CrossRefGoogle Scholar
  41. 41.
    Bernhart FW (1940) Molecular weight of egg albumin. J. Biol. Chem. 132.Google Scholar
  42. 42.
    Keune K, Boon JJ (2005) Analytical imaging studies clarifying the process of the darkening of vermilion in paintings. Anal Chem 77:4742–4750CrossRefGoogle Scholar
  43. 43.
    van den Brink OF, Boon JJ, O'Connor PB, Duursma MC, Heeren RMA (2001) Matrix-assisted laser desorption/ionization Fourier transform mass spectrometric analysis of oxygenated triglycerides and phosphatidylcholines in egg tempera paint dosimeters used for environmental monitoring of museum display conditions. J Mass Spectrom 36:479–492CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Celia Duce
    • 1
  • Lisa Ghezzi
    • 1
  • Massimo Onor
    • 2
  • Ilaria Bonaduce
    • 1
  • Maria Perla Colombini
    • 1
  • Maria Rosaria Tine’
    • 1
  • Emilia Bramanti
    • 2
  1. 1.Dipartimento di Chimica e Chimica IndustrialePisaItaly
  2. 2.National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS PisaPisaItaly

Personalised recommendations