Analytical and Bioanalytical Chemistry

, Volume 403, Issue 9, pp 2471–2491 | Cite as

Current challenges in compound-specific stable isotope analysis of environmental organic contaminants

  • Martin Elsner
  • Maik A. Jochmann
  • Thomas B. Hofstetter
  • Daniel Hunkeler
  • Anat Bernstein
  • Torsten C. Schmidt
  • Arndt Schimmelmann


Compound-specific stable-isotope analysis (CSIA) has greatly facilitated assessment of sources and transformation processes of organic pollutants. Multielement isotope analysis is one of the most promising applications of CSIA because it even enables distinction of different transformation pathways. This review introduces the essential features of continuous-flow isotope-ratio mass spectrometry (IRMS) and highlights current challenges in environmental analysis as exemplified for the isotopes of nitrogen, hydrogen, chlorine, and oxygen. Strategies and recent advances to enable isotopic measurements of polar contaminants, for example pesticides or pharmaceuticals, are discussed with special emphasis on possible solutions for analysis of low concentrations of contaminants in environmental matrices. Finally, we discuss different levels of calibration and referencing and point out the urgent need for compound-specific isotope standards for gas chromatography–isotope-ratio mass spectrometry (GC–IRMS) of organic pollutants.


Compound-specific isotope analysis of environmental contaminants: chromatographic separation is followed by online conversion to a suitable measurement gas (M) and subsequent isotope ratio mass spectrometry. Current challenges in the field concern the analysis of multiple elements (C, H, N, O, Cl) in polar compounds, at low concentrations and in the presence of matrix interferences. An urgent need exists for contaminant-specific reference materials.


Gas chromatography-isotope-ratio mass spectrometry Isotope fractionation Groundwater contamination Pollution source Transformation pathways Isotope standard 



This work was supported by the Helmholtz Initiative and Networking Fonds to ME, and by the NSF grant EAR-1052927 to AS. We thank two anonymous reviewers whose helpful comments improved the quality of the manuscript.


  1. 1.
    Meier-Augenstein W (2004) GC and IRMS technology for 13C and 15N analysis on organic compounds and related gases. Handbook of Stable Isotope Analytical Techniques 1:153–176Google Scholar
  2. 2.
    Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15:501–519CrossRefGoogle Scholar
  3. 3.
    Hall JA, Barth JAC, Kalin RM (1999) Routine analysis by high precision gas chromatography/mass selective detector/isotope-ratio mass spectrometry to 0.1 parts per mil. Rapid Commun Mass Spectrom 13(13):1231–1236CrossRefGoogle Scholar
  4. 4.
    Brand WA (2004) Mass Spectrometer Hardware for Analyzing Stable Isotope Ratios. In: Groot PAd (ed) Handbook of Stable Isotope Analytical Techniques, Volume-I. Elsevier B.V., pp 835-857Google Scholar
  5. 5.
    Coplen TB, Bohlke JK, De Bievre P, Ding T, Holden NE, Hopple JA, Krouse HR, Lamberty A, Peiser HS, Revesz K, Rieder SE, Rosman KJR, Roth E, Taylor PDP, Vocke RD, Xiao YK (2002) Isotope-abundance variations of selected elements - (IUPAC Technical Report). Pure Appl Chem 74(10):1987–2017CrossRefGoogle Scholar
  6. 6.
    Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S, Sakaguchi-Söder K, Laaks J, Jochmann MA, Cretnik S, Jager J, Haderlein SB, Schmidt TC, Aravena R, Elsner M (2011) Compound-Specific Chlorine Isotope Analysis: A Comparison of Gas Chromatography/Isotope Ratio Mass Spectrometry and Gas Chromatography/Quadrupole Mass Spectrometry Methods in an Interlaboratory Study. Anal Chem 83(20):7624–7634CrossRefGoogle Scholar
  7. 7.
    de Groot PA (2009) Carbon: Organic materials. In: de Groot PA (ed) Handbook of Stable Isotope Analytical Techniques, Vol. 2 Elsevier, Amsterdam, pp 229-269Google Scholar
  8. 8.
    Gröning M (2009) International stable isotope reference materials. In: de Groot PA (ed) Handbook of Stable Isotope Analytical Techniques, Vol. 1 Elsevier, Amsterdam, pp 874-906Google Scholar
  9. 9.
    Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) New Guidelines for 13C Measurements. Anal Chem 78(7):2439–2441CrossRefGoogle Scholar
  10. 10.
    Debajyoti P, Grzegorz S, István F (2007) Normalization of measured stable isotopic compositions to isotope reference scales – a review. Rapid Commun Mass Spectrom 21(18):3006–3014CrossRefGoogle Scholar
  11. 11.
    Lin Y, Clayton RN, Gröning M (2010) Calibration of δ 17O and δ 18O of international measurement standards – VSMOW, VSMOW2, SLAP, and SLAP2. Rapid Commun Mass Spectrom 24(6):773–776CrossRefGoogle Scholar
  12. 12.
    Lichtfouse E (2000) Compound-specific isotope analysis. Application to archaelogy, biomedical sciences, biosynthesis, environment, extraterrestrial chemistry, food science, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport. Rapid Commun Mass Spectrom 14(15):1337–1344CrossRefGoogle Scholar
  13. 13.
    Nier AO, Gulbransen EA (1939) Variations in the relative abundance of the carbon isotopes. J Am Chem Soc 61(3):697–698CrossRefGoogle Scholar
  14. 14.
    Urey HC (1948) Oxygen isotopes in nature and in the laboratory. Science 108(2810):489–496CrossRefGoogle Scholar
  15. 15.
    Bigeleisen J (1949) The Validity of the Use of Traces to Follow Chemical Reactions. Science 110(2844):14–16CrossRefGoogle Scholar
  16. 16.
    McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC (1950) Improvements in mass spectrometers for the measurement of small differences in isotopic abundance ratios. Rev Sci Instrum 21:724–730CrossRefGoogle Scholar
  17. 17.
    Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25(17):2538–2560Google Scholar
  18. 18.
    Taylor PDP, De Bièvre P, Valkiers S (2004) The Nature and Role of Primary Certified Reference Materials: A Tool to Underpin Isotopic Measurement on a Global Scale. In: De Groot PA (ed) Handbook of Stable Isotope Analytical Techniques, vol 1. Elsevier, Amsterdam, pp 907–927Google Scholar
  19. 19.
    Sano M, Yotsui Y, Abe H, Sasaki S (1976) A new technique for the detection of metabolites labelled by the isotope 13C using mass fragmentography. Biomed Mass Spectrom 3(1):1–3CrossRefGoogle Scholar
  20. 20.
    Matthews DE, Hayes JM (1978) Isotope-Ratio-Monitoring Gas Chromatography-Mass Spectrometry. Anal Chem 50(11):1465–1473CrossRefGoogle Scholar
  21. 21.
    Barrie A, Bricout J, Koziet J (1984) Gas Chromatography - Stable Isotope Ratio Analysis at Natural Abundance Levels. Biomed Mass Spectrom 11(11):583–588CrossRefGoogle Scholar
  22. 22.
    Meier-Augenstein W (1999) Applied gas chromatography coupled to isotope-ratio mass spectrometry. J Chromatogr A 842:351–371CrossRefGoogle Scholar
  23. 23.
    Brand WA (1998) Isotope Ratio Mass Spectrometry: Precision from Transient Signals. In: Karjalainen EJ, Hesso AE, Jalonen JE, Karjalainen UP (eds) Advances in Mass Spectrometry, vol 14. Elsevier Science Publishers B. V, AmsterdamGoogle Scholar
  24. 24.
    Sessions AL (2006) Isotope-ratio detection for gas chromatography. J SepSci 29:1946–1961Google Scholar
  25. 25.
    Preston T, Slater C (1994) Mass-Spectrometric Analysis of Stable-Isotope-Labelled Amino-Acid Tracers. Proc Nutr Soc 53(2):363–372CrossRefGoogle Scholar
  26. 26.
    Merritt DA, Hayes JM (1994) Nitrogen Isotopic Analyses by Isotope-Ratio-Monitoring Gas Chromatography / Mass Spectrometry. J Am Soc Mass Spectrom 5:387–397CrossRefGoogle Scholar
  27. 27.
    Brand WA, Tegtmeyer AR, Hilkert A (1994) Compound-specific isotope analysis: extending toward 15N/14N and 18O/16O. Org Geochem 21(6–7):585–594CrossRefGoogle Scholar
  28. 28.
    Burgoyne TW, Hayes JM (1998) Quantitative production of H-2 by pyrolysis of gas chromatographic effluents. Anal Chem 70(24):5136–5141CrossRefGoogle Scholar
  29. 29.
    Hilkert AW, Douthitt CB, Schlüter HJ, Brand WA (1999) Isotope ratio monitoring gas chromatography/mass spectrometry of D/H by high temperature conversion isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom 13(13):1226–1230CrossRefGoogle Scholar
  30. 30.
    Platzner IT, Habfast K, Walder AJ, Goetz A (1997) Modern isotope-ratio mass spectrometry. J. Wiley, Chichester, New York, ISBN 0471974161, 9780471974161Google Scholar
  31. 31.
    Preston T, Owens NJP (1983) Interfacing and automatic elemental analyser with an isotope-ratio mass spectrometer: the potential for fully automated total nitrogen and nitrogen-15 analysis. Analyst 12:510–513Google Scholar
  32. 32.
    Abramson FP, Black GE, Lecchi P (2001) Application of high-performance liquid chromatography with isotope-ratio mass spectrometry for measuring low levels of enrichment of underivatized materials. J Chromatogr A 913(1–2):269–273Google Scholar
  33. 33.
    Caimi RJ, Brenna JT (1993) High-Precision Liquid Chromatography-Combustion Isotope Ratio Mass-Spectrometry. Anal Chem 65(23):3497–3500CrossRefGoogle Scholar
  34. 34.
    Brand WA (1996) High precision isotope ratio monitoring techniques in mass spectrometry. J Mass Spectrom 31(3):225–235CrossRefGoogle Scholar
  35. 35.
    Sessions AL, Sylva SP, Hayes JM (2005) Moving-wire device for carbon isotopic analyses of nanogram quantities of nonvolatile organic carbon. Anal Chem 77(20):6519–6527CrossRefGoogle Scholar
  36. 36.
    Krummen M, Hilkert AW, Juchelka D, Duhr A, Schluter HJ, Pesch R (2004) A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18(19):2260–2266CrossRefGoogle Scholar
  37. 37.
    Meckenstock RU, Morasch B, Warthmann R, Schink B, Annweiler E, Michaelis W, Richnow HH (1999) 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. Environ Microbiol 1(5):409–414CrossRefGoogle Scholar
  38. 38.
    Sherwood Lollar B, Slater GF, Ahad J, Sleep B, Spivack J, Brennan M, MacKenzie P (1999) Contrasting carbon isotope fractionation during biodegradation of trichloroethylene and toluene: implications for intrinsic bioremediation. Org Geochem 30(8):813–820CrossRefGoogle Scholar
  39. 39.
    Hunkeler D, Aravena R, Butler BJ (1999) Monitoring microbial dechlorination of tetrachloroethene (PCE) using compound-specific carbon isotope ratios: Microcosms and field experiments. Environ Sci Technol 33(16):2733–2738CrossRefGoogle Scholar
  40. 40.
    Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378(2):283–300CrossRefGoogle Scholar
  41. 41.
    Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J Contam Hydrol 75(3–4):215–255CrossRefGoogle Scholar
  42. 42.
    Thullner M, Richnow H-H, Fischer A (2009) Characterization and quantification of in situ biodegradation of groundwater contaminants using stable isotope fractionation analysis: advantages and limitations. In: Gallo D, Mancini R (eds) Environmental and Regional Air Pollution. Nova Science PublishersGoogle Scholar
  43. 43.
    Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39(18):6896–6916CrossRefGoogle Scholar
  44. 44.
    Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 12(11):2005–2031CrossRefGoogle Scholar
  45. 45.
    Hofstetter TB, Berg M (2011) Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. TrAC Trends Anal Chem 30(4):618–627CrossRefGoogle Scholar
  46. 46.
    Aelion CM, Hohener P, Hunkeler D, Aravena R (eds) (2009) Environmental Isotopes in Bioremediation and Biodegradation. CRC Press,Google Scholar
  47. 47.
    Jochmann MA, Schmidt TC (2012) Compound-Specific Stable Isotope Analysis Royal Society of ChemistryGoogle Scholar
  48. 48.
    Wilson JT, Kaiser PM, Adair C (2005) Monitored Natural Attenuation of MTBE as a Risk Management Option at Leaking Underground Storage Tank Sites. EPA, Cincinnati, U.SGoogle Scholar
  49. 49.
    Hunkeler D, Meckenstock RU, Sherwood Lollar B, Schmidt TC, Wilson JT (2008) A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants using Compound Specific Isotope Analysis (CSIA) Office of Research and Development. US EPA, Oklahoma, USAGoogle Scholar
  50. 50.
    Eisenmann H, Fischer A (2010) Isotopenuntersuchungen in der Altlastenbewertung. In: Franzius V, Altenbockum M, Gerhold T (eds) Handbuch der Altlastensanierung und Flächenmanagement. Verlagsgruppe Hüthig Jehle Rehm, MünchenGoogle Scholar
  51. 51.
    Hofstetter TB, Schwarzenbach RP, Bernasconi SM (2008) Assessing Transformation Processes of Organic Compounds Using Stable Isotope Fractionation. Environ Sci Technol 42(21):7737–7743CrossRefGoogle Scholar
  52. 52.
    Brenninkmeijer CAM, Janssen C, Kaiser J, Röckmann T, Rhee TS, Assonov SS (2003) Isotope Effects Chem Atmospheric Trace Compd Chem Rev 103(12):5125–5162Google Scholar
  53. 53.
    Goldstein AH, Shaw S (2003) Istopes of volatile organic compounds: an emerging approach for studying atmospheric budgets and chemistry. Chem Rev 103:5025–5048CrossRefGoogle Scholar
  54. 54.
    Boyd TJ, Osburn CL, Johnson KJ, Birgl KB, Coffin RB (2006) Compound-specific isotope analysis coupled with multivariate statistics to source-apportion hydrocarbon mixtures. Environ Sci Technol 40(6):1916–1924CrossRefGoogle Scholar
  55. 55.
    Walker SE, Dickhut RM, Chisholm-Brause C, Sylva S, Reddy CM (2005) Molecular and isotopic identification of PAH sources in a highly industrialized urban estuary. Org Geochem 36(4):619–632CrossRefGoogle Scholar
  56. 56.
    Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL (2004) Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. J Contam Hydrol 74(1–4):265–282CrossRefGoogle Scholar
  57. 57.
    Blessing M, Schmidt TC, Dinkel R, Haderlein SB (2009) Delineation of Multiple Chlorinated Ethene Sources in an Industrialized Area: A Forensic Field Study Using Compound-Specific Isotope Analysis. Environ Sci Technol 43(8):2701–2707CrossRefGoogle Scholar
  58. 58.
    Wang Y, Huang Y, Huckins JN, Petty JD (2004) Compound-Specific Carbon and Hydrogen Isotope Analysis of Sub-Parts per Billion Level Waterborne Petroleum Hydrocarbons. Environ Sci Technol 38(13):3689–3697CrossRefGoogle Scholar
  59. 59.
    Mudge SM, Meier-Augenstein W, Eadsforth C, DeLeo P (2010) What contribution do detergent fatty alcohols make to sewage discharges and the marine environment? J Environ Monit 12(10):1846–1856CrossRefGoogle Scholar
  60. 60.
    Rayleigh JWS (1896) Theoretical Considerations respecting the Separation of Gases by Diffusion and Similar Processes. Philos Mag 42:493–498Google Scholar
  61. 61.
    Hunkeler D, Morasch B (2010) Isotope Fractionation during Transformation Processes. In: Aelion CM, Höhener P, Hunkeler D, Aravena R (eds) Environmental isotopes in biodegradation and bioremediation. CRC Press. Taylor & Francis Group, Boca Raton, pp 79–128Google Scholar
  62. 62.
    Hartenbach AE, Hofstetter TB, Tentscher PR, Canonica S, Berg M, Schwarzenbach RP (2008) Carbon, hydrogen, and nitrogen isotope fractionation during light-induced transformations of atrazine. Environ Sci Technol 42(21):7751–7756CrossRefGoogle Scholar
  63. 63.
    Meyer AH, Penning H, Elsner M (2009) C and N isotope fractionation suggests similar mechanisms of microbial atrazine transformation despite involvement of different Enzymes (AtzA and TrzN). Environ Sci Technol 43(21):8079–8085CrossRefGoogle Scholar
  64. 64.
    Penning H, Cramer CJ, Elsner M (2008) Rate-Dependent Carbon and Nitrogen Kinetic Isotope Fractionation in Hydrolysis of Isoproturon. Environ Sci Technol 42(21):7764–7771CrossRefGoogle Scholar
  65. 65.
    Penning H, Sorensen SR, Meyer AH, Aamand J, Elsner M (2010) C, N, and H Isotope Fractionation of the Herbicide Isoproturon Reflects Different Microbial Transformation Pathways. Environ Sci Technol 44(7):2372–2378CrossRefGoogle Scholar
  66. 66.
    Skarpeli-Liati M, Jiskra M, Turgeon A, Garr AN, Arnold WA, Cramer CJ, Schwarzenbach RP, Hofstetter TB (2011) Using Nitrogen Isotope Fractionation to Assess the Oxidation of Substituted Anilines by Manganese Oxide. Environ Sci Technol 45(13):5596–5604CrossRefGoogle Scholar
  67. 67.
    Hofstetter TB, Spain JC, Nishino SF, Bolotin J, Schwarzenbach RP (2008) Identifying Competing Aerobic Nitrobenzene Biodegradation Pathways by Compound-Specific Isotope Analysis. Environ Sci Technol 42(13):4764–4770CrossRefGoogle Scholar
  68. 68.
    Hartenbach AE, Hofstetter TB, Aeschbacher M, Sander M, Kim D, Strathmann TJ, Arnold WA, Cramer CJ, Schwarzenbach RP (2008) Variability of Nitrogen Isotope Fractionation during the Reduction of Nitroaromatic Compounds with Dissolved Reductants. Environ Sci Technol 42(22):8352–8359CrossRefGoogle Scholar
  69. 69.
    Bernstein A, Ronen Z, Adar E, Nativ R, Lowag H, Stichler W, Meckenstock RU (2008) Compound-Specific Isotope Analysis of RDX and Stable Isotope Fractionation during Aerobic and Anaerobic Biodegradation. Environ Sci Technol 42(21):7772–7777CrossRefGoogle Scholar
  70. 70.
    Wolfsberg M, Van Hook WA, Paneth P (2010) Isotope Effects in the Chemical, Geological and Bio Sciences. Springer, Dordrecht, Heidelberg, London, New YorkGoogle Scholar
  71. 71.
    Hunkeler D, Aravena R (2010) Investigating the Origin and Fate of Organic Contaminants in Groundwater Using Stable Isotope Analysis. In: Aelion CM, Höhener P, Hunkeler D, Aravena R (eds) Environmental isotopes in biodegradation and bioremediation. CRC Press. Taylor & Francis Group, Boca Raton, pp 249–291Google Scholar
  72. 72.
    McKelvie JR, Hirschorn SK, Lacrampe-Couloume G, Lindstrom J, Braddock J, Finneran K, Trego D, Lollar BS (2007) Evaluation of TCE and MTBE in situ Biodegradation: Integrating Stable Isotope, Metabolic Intermediate, and Microbial Lines of Evidence. Ground Water Monit Remediat 27(4):63–73CrossRefGoogle Scholar
  73. 73.
    Gl I, Nijenhuis I, Nikolausz M, Zeiger S, Paschke H, Drangmeister J, Grossmann J, Richnow HH, Weber S (2008) Assessment of in situ degradation of chlorinated ethenes and bacterial community structure in a complex contaminated groundwater system. Water Res 42(4–5):871–882Google Scholar
  74. 74.
    Nijenhuis I, Nikolausz M, Koth A, Felfoldi T, Weiss H, Drangmeister J, Gromann J, Kastner M, Richnow HH (2007) Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers. Chemosphere 67(2):300–311CrossRefGoogle Scholar
  75. 75.
    Pooley KE, Blessing M, Schmidt TC, Haderlein SB, MacQuarrie KTB, Prommer H (2009) Aerobic Biodegradation of Chlorinated Ethenes in a Fractured Bedrock Aquifer: Quantitative Assessment by Compound-Specific Isotope Analysis (CSIA) and Reactive Transport Modeling. Environ Sci Technol 43(19):7458–7464CrossRefGoogle Scholar
  76. 76.
    Stelzer N, Gl I, Thullner M, Lehmann J, Poser A, Richnow HH, Nijenhuis I (2009) Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers. Environ Pollut 157(6):1800–1806CrossRefGoogle Scholar
  77. 77.
    Morrill PL, Lacrampe-Couloume G, Slater GF, Sleep BE, Edwards EA, McMaster ML, Major DW, Sherwood Lollar B (2005) Quantifying chlorinated ethene degradation during reductive dechlorination at Kelly AFB using stable carbon isotopes. J Contam Hydrol 76(3–4):279–293CrossRefGoogle Scholar
  78. 78.
    Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Combined application of stable carbon-isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ Sci Technol 38(2):617–631CrossRefGoogle Scholar
  79. 79.
    McKelvie JR, Lindstrom JE, Beller HR, Richmond SA, Sherwood Lollar B (2005) Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates. J Contam Hydrol 81(1–4):167–186CrossRefGoogle Scholar
  80. 80.
    Spence MJ, Bottrell SH, Thornton SF, Richnow HH, Spence KH (2005) Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer. J Contam Hydrol 79(1–2):67–88CrossRefGoogle Scholar
  81. 81.
    Mak KS, Griebler C, Meckenstock RU, Liedl R, Peter A (2006) Combined application of conservative transport modelling and compound-specific carbon isotope analyses to assess in situ attenuation of benzene, toluene, and o-xylene. J Contam Hydrol 88(3–4):306–320CrossRefGoogle Scholar
  82. 82.
    Blum P, Hunkeler D, Weede M, Beyer C, Grathwohl P, Morasch B (2009) Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis-Menten kinetics and stable carbon isotopes. J Contam Hydrol 105(3–4):118–130CrossRefGoogle Scholar
  83. 83.
    Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: Microcosm and field evidence. Environ Sci Technol 39(1):213–220CrossRefGoogle Scholar
  84. 84.
    Bernstein A, Adar E, Ronen Z, Lowag H, Stichler W, Meckenstock RU (2010) Quantifying RDX biodegradation in groundwater using [delta]15N isotope analysis. J Contam Hydrol 111(1–4):25–35CrossRefGoogle Scholar
  85. 85.
    Sessions AL, Burgoyne TW, Hayes JM (2001) Correction of H-3(+) contributions in hydrogen isotope ratio monitoring mass spectrometry. Anal Chem 73(2):192–199CrossRefGoogle Scholar
  86. 86.
    Meier-Augenstein W, Kemp HF, Lock CM (2009) N2:a potential pitfall for bulk 2H isotope analysis of explosives and other nitrogen-rich compounds by continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom 23(13):2011–2016CrossRefGoogle Scholar
  87. 87.
    Brenna JT, Corso TN, Tobias HJ, Caimi RJ (1997) High-precision continuous-flow isotope-ratio mass spectrometry. Mass Spectrom Rev 16(5):227–258CrossRefGoogle Scholar
  88. 88.
    Meyer AH, Penning H, Lowag H, Elsner M (2008) Precise and accurate compound specific carbon and nitrogen isotope analysis of atrazine: critical role of combustion oven conditions. Environ Sci Technol 42(21):7757–7763CrossRefGoogle Scholar
  89. 89.
    Penning H, Elsner M (2007) Intramolecular carbon and nitrogen isotope analysis by quantitative dry fragmentation of the phenylurea herbicide isoproturon in a combined injector/capillary reactor prior to GC separation. Anal Chem 79(21):8399–8405CrossRefGoogle Scholar
  90. 90.
    Berg M, Bolotin J, Hofstetter TB (2007) Compound-Specific Nitrogen and Carbon Isotope Analysis of Nitroaromatic Compounds in Aqueous Samples Using Solid-Phase Microextraction Coupled to GC–IRMS. Anal Chem 79(6):2386–2393CrossRefGoogle Scholar
  91. 91.
    Hartenbach A, Hofstetter TB, Berg M, Bolotin J, Schwarzenbach RP (2006) Using Nitrogen Isotope Fractionation To Assess Abiotic Reduction of Nitroaromatic Compounds. Environ Sci Technol 40(24):7710–7716CrossRefGoogle Scholar
  92. 92.
    Hill JW, Fry A (1962) Chlorine Isotope Effects in the Reactions of Benzyl and Substituted Benzyl Chlorides with Various Nucleophiles. J Am Chem Soc 84(14):2763–2769CrossRefGoogle Scholar
  93. 93.
    Kaufmann R, Long A, Bentley H, Davis S (1984) Natural chlorine isotope variations. Nature 309(5966):338–340CrossRefGoogle Scholar
  94. 94.
    Holt BD, Sturchio NC, Abrajano TA, Heraty LJ (1997) Conversion of chlorinated volatile organic compounds to carbon dioxide and methyl chloride for isotopic analysis of carbon and chlorine. Anal Chem 69(14):2727–2733CrossRefGoogle Scholar
  95. 95.
    Numata M, Nakamura N, Koshikawa H, Terashima Y (2002) Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria. Environ Sci Technol 36(20):4389–4394CrossRefGoogle Scholar
  96. 96.
    Holmstrand H, Andersson P, Gustafsson O (2004) Chlorine isotope analysis of submicromole organochlorine samples by sealed tube combustion and thermal ionization mass spectrometry. Anal Chem 76(8):2336–2342CrossRefGoogle Scholar
  97. 97.
    Van Acker M, Shahar A, Young ED, Coleman ML (2006) GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons. Anal Chem 78(13):4663–4667CrossRefGoogle Scholar
  98. 98.
    Hitzfeld KL, Gehre M, Richnow H-H (2011) A novel online approach to the determination of isotopic ratios for organically bound chlorine, bromine and sulphur. Rapid Commun Mass Spectrom 25(20):3114–3122CrossRefGoogle Scholar
  99. 99.
    Shouakar-Stash O, Drimmie RJ, Zhang M, Frape SK (2006) Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS. Appl Geochem 21(5):766–781CrossRefGoogle Scholar
  100. 100.
    Sakaguchi-Soder K, Jager J, Grund H, Matthaus F, Schuth C (2007) Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Commun Mass Spectrom 21(18):3077–3084CrossRefGoogle Scholar
  101. 101.
    Aeppli C, Holmstrand H, Andersson P, Gustafsson O (2010) Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal Chem 82(1):420–426CrossRefGoogle Scholar
  102. 102.
    Jin B, Laskov C, Rolle M, Haderlein SB (2011) Chlorine Isotope Analysis of Organic Contaminants Using GC-qMS: Method Optimization and Comparison of Different Evaluation Schemes. Environ Sci Technol 45(12):5279–5286CrossRefGoogle Scholar
  103. 103.
    Elsner M, Hunkeler D (2008) Evaluating Chlorine Isotope Effects from Isotope Ratios and Mass Spectra of Polychlorinated Molecules. Anal Chem 80(12):4731–4740CrossRefGoogle Scholar
  104. 104.
    Hener U, Brand WA, Hilkert AW, Juchelka D, Mosandl A, Podebrad F (1998) Simultaneous on-line analysis of 18O/16O and 13C/12C ratios of organic compounds using GC-pyrolysis-IRMS. Zeitschrift fur Lebensmittel -Untersuchung und -Forschung 206(3):230–232CrossRefGoogle Scholar
  105. 105.
    Jung JC, Sewenig S, Hener U, Mosandl A (2005) Comprehensive authenticity assessment of lavender oils using multielement/multicomponent isotope-ratio mass spectrometry analysis and enantioselective multidimensional gas chromatography-mass spectrometry. Eur Food Res Technol 220(2):232–237CrossRefGoogle Scholar
  106. 106.
    Hofmann D, Gehre M, Jung K (2003) Sample preparation techniques for the determination of natural N-15/N-14 variations in amino acids by gas chromatography-combustion-isotope-ratio mass spectrometry (GC-C-IRMS). Isot Environ Health Stud 39(3):233–244CrossRefGoogle Scholar
  107. 107.
    Rieley G (1994) Derivatization of Organic-Compounds Prior to Gas-Chromatographic Combustion-Isotope Ratio Mass-Spectrometric Analysis - Identification of Isotope Fractionation Processes. Analyst 119(5):915–919CrossRefGoogle Scholar
  108. 108.
    Ziadeh BI, Michaud AL, Saad NMR, Lewis BA, Rafii M, Pencharz PB, Brenna JT (2002) Enzymatic Decarboxylation of Tyrosine and Phenylalanine To Enhance Volatility for High-Precision Isotopic Analysis. Anal Chem 74(2):479–483CrossRefGoogle Scholar
  109. 109.
    Breider F, Hunkeler D (2011) Position-Specific Carbon Isotope Analysis of Trichloroacetic Acid by Gas Chromatography Isotope Ratio Mass Spectrometry. Rapid Communications in Mass Spectrometry, in pressGoogle Scholar
  110. 110.
    Corso TN, Lewis BA, Brenna JT (1998) Reduction of Fatty Acid Methyl Esters to Fatty Alcohols To Improve Volatility for Isotopic Analysis without Extraneous Carbon. Anal Chem 70(18):3752–3756CrossRefGoogle Scholar
  111. 111.
    Wuerfel O, Diaz-Bone RA, Stephan M, Jochmann MA (2009) Determination of 13C/12C Isotopic Ratios of Biogenic Organometal(loid) Compounds in Complex Matrixes. Anal Chem 81(11):4312–4319CrossRefGoogle Scholar
  112. 112.
    Saudan C, Augsburger M, Mangin P, Saugy M (2007) Carbon isotopic ratio analysis by gas chromatography/combustion/isotope-ratio mass spectrometry for the detection of gamma-hydroxybutyric acid (GHB) administration to humans. Rapid Commun Mass Spectrom 21(24):3956–3962CrossRefGoogle Scholar
  113. 113.
    Prévost S, Nicol T, Monteau F, André F, Bizec BL (2001) Gas chromatography/combustion/isotope-ratio mass spectrometry to control the misuse of androgens in breeding animals: new derivatisation method applied to testosterone metabolites and precursors in urine samples. Rapid Commun Mass Spectrom 15(24):2509–2514CrossRefGoogle Scholar
  114. 114.
    Meier-Augenstein W (2002) Stable isotope analysis of fatty acids by gas chromatography-isotope-ratio mass spectrometry. Anal Chim Acta 465(1–2):63–79CrossRefGoogle Scholar
  115. 115.
    Shinebarger SR, Haisch M, Matthews DE (2002) Retention of Carbon and Alteration of Expected 13C-Tracer Enrichments by Silylated Derivatives Using Continuous-Flow Combustion-Isotope Ratio Mass Spectrometry. Anal Chem 74(24):6244–6251CrossRefGoogle Scholar
  116. 116.
    Gross S, Glaser B (2004) Minimization of carbon addition during derivatization of monosaccharides for compound-specific 13C analysis in environmental research. Rapid Commun Mass Spectrom 18(22):2753–2764CrossRefGoogle Scholar
  117. 117.
    Piper T, Emery C, Saugy M (2011) Recent developments in the use of isotope-ratio mass spectrometry in sports drug testing. Anal Bioanal Chem 401(2):433–447CrossRefGoogle Scholar
  118. 118.
    Aguilera R, Becchi M, Casabianca H, Hatton CK, Catlin DH, Starcevic B, Pope HG (1996) Improved method of detection of testosterone abuse by gas chromatography/combustion/isotope-ratio mass spectrometry analysis of urinary steroids. J Mass Spectrom 31(2):169–176CrossRefGoogle Scholar
  119. 119.
    Docherty G, Jones V, Evershed RP (2001) Practical and theoretical considerations in the gas chromatography/combustion/isotope-ratio mass spectrometry δ 13C analysis of small polyfunctional compounds. Rapid Commun Mass Spectrom 15(9):730–738CrossRefGoogle Scholar
  120. 120.
    Corr LT, Berstan R, Evershed RP (2007) Optimisation of derivatisation procedures for the determination of d13C values of amino acids by gas chromatography/combustion/isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom 21(23):3759–3771CrossRefGoogle Scholar
  121. 121.
    Macko SA, Ryan M, Engel MH (1998) Stable isotopic analysis of individual carbohydrates by gas chromatographic/combustion/isotope-ratio mass spectrometry. Chem Geol 152(1–2):205–210CrossRefGoogle Scholar
  122. 122.
    Silfer JA, Engel MH, Macko SA, Jumeau EJ (1991) Stable carbon-isotope analysis of amino acid enantiomers by conventional isotope-ratio mass spectrometry and combined gas chromatography/isotope-ratio mass spectrometry. Anal Chem 63(4):370–374CrossRefGoogle Scholar
  123. 123.
    Melander L, Saunders WH (1980) Reaction rates of isotopic molecules. John Wiley, New YorkGoogle Scholar
  124. 124.
    Reinnicke S, Bernstein A, Elsner M (2010) Small and Reproducible Isotope Effects during Methylation with Trimethylsulfonium Hydroxide (TMSH): A Convenient Derivatization Method for Isotope Analysis of Negatively Charged Molecules. Anal Chem 82(5):2013–2019CrossRefGoogle Scholar
  125. 125.
    Teffera Y, Kusmierz JJ, Abramson FP (1996) Continuous-Flow Isotope Ratio Mass Spectrometry Using the Chemical Reaction Interface with Either Gas or Liquid Chromatographic Introduction. Anal Chem 68(11):1888–1894CrossRefGoogle Scholar
  126. 126.
    Morrison DJ, Taylor K, Preston T (2010) Strong Anion-Exchange Liquid Chromatography Coupled with Isotope Ratio Mass Spectrometry Using a Liquiface Interface. Rapid Commun Mass Spectrom 24(12):1755–1762CrossRefGoogle Scholar
  127. 127.
    Godin J-P, Fay L-B, Hopfgartner G (2007) Liquid chromatography combined with mass spectrometry for 13C isotopic analysis in life science research. Mass Spectrom Rev 26(6):751–774CrossRefGoogle Scholar
  128. 128.
    Godin J-P, McCullagh JSO (2011) Review: Current applications and challenges for liquid chromatography coupled to isotope-ratio mass spectrometry (LC–IRMS). Rapid Commun Mass Spectrom 25(20):3019–3028CrossRefGoogle Scholar
  129. 129.
    Yang Y (2007) Subcritical water chromatography: A green approach to high-temperature liquid chromatography. J Sep Sci 30(8):1131–1140CrossRefGoogle Scholar
  130. 130.
    Godin JP, Hopfgartner G, Fay L (2008) Temperature-Programmed High-Performance Liquid Chromatography Coupled to Isotope Ratio Mass Spectrometry. Anal Chem 80(18):7144–7152CrossRefGoogle Scholar
  131. 131.
    Zhang L, Kujawinski DM, Jochmann MA, Schmidt TC (2011) High-temperature reversed-phase liquid chromatography coupled to isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom 25(20):2971–2980CrossRefGoogle Scholar
  132. 132.
    Skarpeli-Liati M, Turgeon A, Garr AN, Arnold WA, Cramer CJ, Hofstetter TB (2011) pH-Dependent Equilibrium Isotope Fractionation Associated with the Compound Specific Nitrogen and Carbon Isotope Analysis of Substituted Anilines by SPME-GC–IRMS. Anal Chem 83(5):1641–1648CrossRefGoogle Scholar
  133. 133.
    Zwank L, Berg M, Schmidt TC, Haderlein SB (2003) Compound-specific carbon-isotope analysis of volatile organic compounds in the low-microgram per liter range. Anal Chem 75(20):5575–5583CrossRefGoogle Scholar
  134. 134.
    Auer NR, Manzke BU, Schulz-Bull DE (2006) Development of a purge and trap continuous flow system for the stable carbon-isotope analysis of volatile halogenated organic compounds in water. J Chromatography A 1131(1–2):24–36Google Scholar
  135. 135.
    Jochmann MA, Blessing M, Haderlein SB, Schmidt TC (2006) A new approach to determine method detection limits for compound-specific isotope analysis of volatile organic compounds. Rapid Commun Mass Spectrom 20(24):3639–3648CrossRefGoogle Scholar
  136. 136.
    Amaral HIF, Berg M, Brennwald MS, Hofer M, Kipfer R (2009) 13C/12C Analysis of Ultra-Trace Amounts of Volatile Organic Contaminants in Groundwater by Vacuum Extraction. Environ Sci Technol 44(3):1023–1029CrossRefGoogle Scholar
  137. 137.
    Kujawinski DM, Stephan M, Jochmann MA, Krajenke K, Haas J, Schmidt TC (2010) Stable carbon and hydrogen isotope analysis of methyl tert-butyl ether and tert-amyl methyl ether by purge and trap-gas chromatography-isotope-ratio mass spectrometry: Method evaluation and application. J Environ Monit 12(1):347–354CrossRefGoogle Scholar
  138. 138.
    Hunkeler D, Aravena R (2000) Determination of stable carbon isotope ratios of chlorinated methanes, ethanes and ethenes in aqueous samples. Environ Sci Technol 34:2839–2844CrossRefGoogle Scholar
  139. 139.
    Graham MC, Allan R, Fallick AE, Farmer JG (2006) Investigation of extraction and clean-up procedures used in the quantification and stable isotopic characterisation of PAHs in contaminated urban soils. Sci Total Environ 360(1–3):81–89CrossRefGoogle Scholar
  140. 140.
    Mazeas L, Budzinski H (2001) Polycyclic aromatic hydrocarbon 13C/12C ratio measurement in petroleum and marine sediments: Application to standard reference materials and a sediment suspected of contamination from the Erika oil spill. J Chromatography A 923(1–2):165–176Google Scholar
  141. 141.
    Juchelka D, Beck T, Hener U, Dettmar F, Mosandl A (1998) Multidimensional Gas Chromatography Coupled On-Line with Isotope Ratio Mass Spectrometry (MDGC–IRMS): Progress in the Analytical Authentication of Genuine Flavor Components. J High Resolut Chromatogr 21(3):145–151CrossRefGoogle Scholar
  142. 142.
    Horii Y, Kannan K, Petrick G, Gamo T, Falandysz J, Yamashita N (2005) Congener-Specific Carbon Isotopic Analysis of Technical PCB and PCN Mixtures Using Two-Dimensional Gas Chromatography-Isotope Ratio Mass Spectrometry. Environ Sci Technol 39(11):4206–4212CrossRefGoogle Scholar
  143. 143.
    Tobias H, Brenna J (2010) Microfabrication of high temperature micro-reactors for continuous flow isotope-ratio mass spectrometry. Microfluidics and Nanofluidics 9(2):461–470CrossRefGoogle Scholar
  144. 144.
    Tobias HJ, Sacks GL, Zhang Y, Brenna JT (2008) Comprehensive Two-Dimensional Gas Chromatography Combustion Isotope Ratio Mass Spectrometry. Anal Chem 80(22):8613–8621CrossRefGoogle Scholar
  145. 145.
    Sherwood Lollar B, Hirschorn SK, Chartrand MMG, Lacrampe-Couloume G (2007) An Approach for Assessing Total Instrumental Uncertainty in Compound-Specific Carbon Isotope Analysis: Implications for Environmental Remediation Studies. Anal Chem 79(9):3469–3475CrossRefGoogle Scholar
  146. 146.
    Brand WA, Coplen TB (2001) An interlaboratory study to test instrument performance of hydrogen dual-inlet isotope-ratio mass spectrometers. Fresenius' Journal of Analytical Chemistry 370(4):358–362CrossRefGoogle Scholar
  147. 147.
    de Groot PA (2009) Mass spectrometer correction and calibration procedures. In: de Groot PA (ed) Handbook of Stable Isotope Analytical Techniques, Vol. 2 Elsevier, Amsterdam, pp 1007-1023Google Scholar
  148. 148.
    Brand WA, Coplen TB, Aerts-Bijma AT, Böhlke JK, Gehre M, Geilmann H, Gröning M, Jansen HG, Meijer HAJ, Mroczkowski SJ, Qi H, Soergel K, Stuart-Williams H, Weise SM, Werner RA (2009) Comprehensive inter-laboratory calibration of reference materials for δ 18O versus VSMOW using various on-line high-temperature conversion techniques. Rapid Communications in Mass Spectrometry 23(7):999–1019CrossRefGoogle Scholar
  149. 149.
    Coplen TB, Brand WA, Gehre M, Groning M, Meijer HAJ, Toman B, Verkouteren RM (2006) New guidelines for δ 13C measurements. Anal Chem 78(7):2439–2441CrossRefGoogle Scholar
  150. 150.
    Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochimica et Cosmochimica Acta 60(17):3359–3360CrossRefGoogle Scholar
  151. 151.
    Calderone G, Serra F, Lees M, Mosandl A, Reniero F, Guillou C, Moreno-Rojas JM (2009) Inter-laboratory comparison of elemental analysis and gas chromatography/combustion/isotope-ratio mass spectrometry. II. δ 15N measurements of selected compounds for the development of an isotopic Grob test. Rapid Communications in Mass Spectrometry 23(7):963–970CrossRefGoogle Scholar
  152. 152.
    Zhang Y, Tobias HJ, Brenna JT (2009) Steroid isotopic standards for gas chromatography-combustion isotope-ratio mass spectrometry (GCC-IRMS). Steroids 74(3):369–378CrossRefGoogle Scholar
  153. 153.
    Schimmelmann A, Albertino A, Sauer PE, Qi H, Molinie R, Mesnard F (2009) Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope-ratio mass spectrometry. Rapid Communications in Mass Spectrometry 23(22):3513–3521CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Martin Elsner
    • 1
  • Maik A. Jochmann
    • 2
  • Thomas B. Hofstetter
    • 3
  • Daniel Hunkeler
    • 4
  • Anat Bernstein
    • 5
  • Torsten C. Schmidt
    • 2
  • Arndt Schimmelmann
    • 6
  1. 1.Helmholtz Zentrum MünchenInstitute of Groundwater EcologyNeuherbergGermany
  2. 2.Instrumental Analytical ChemistryUniversity Duisburg-EssenEssenGermany
  3. 3.Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  4. 4.University of Neuchâtel, Centre for HydrogeologyNeuchâtelSwitzerland
  5. 5.Zuckerberg Institute for Water Research, Department of Environmental Hydrology and MicrobiologyBen-Gurion University of the NegevNegevIsrael
  6. 6.Department of Geological SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations