Analytical and Bioanalytical Chemistry

, Volume 402, Issue 6, pp 2015–2021 | Cite as

Infrared spectroscopic analysis of mononuclear leukocytes in peripheral blood from Alzheimer’s disease patients

  • Pedro Carmona
  • Marina Molina
  • Miguel Calero
  • Félix Bermejo-Pareja
  • Pablo Martínez-Martín
  • Isabel Alvarez
  • Adolfo Toledano
Paper in Forefront


Peripheral mononuclear leukocytes from Alzheimer’s disease (AD) patients were analyzed by infrared spectroscopy and their spectroscopic properties were compared with those from age-matched healthy controls. Two-dimensional correlation analysis of mean spectra measured at various disease stages shows that the protein secondary structure from AD patients involves β-sheet enrichment and carbonyl intensity increase relative to healthy controls. The area percentages of β-sheets, which were obtained by using a peak ratio second-derivative spectral treatment, were used for receiver operating characteristic (ROC) analysis to distinguish between patients with AD and age-matched healthy controls. The critical concentration and area under the curve (AUC) were determined by this curve analysis which showed a good performance for this quantitative assay. The results were 90% sensitivity and 90.5% specificity for determinations involving mild and moderate AD patients, and 82.1% sensitivity and 90.5% specificity for determinations involving patients at the three AD stages (mild, moderate, and severe). The AUC was greater than 0.85 in both scenarios. Taken together these results show that healthy controls are distinguished from mild and moderate AD patients better than from patients with severe disease and suggest that this infrared analysis is a promising strategy for AD diagnostics.


Infrared spectroscopy Mononuclear leukocytes Alzheimer’s disease Diagnostics 


  1. 1.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766Google Scholar
  2. 2.
    Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St. George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid beta-protein gene-cDNA, messenger-RNA distribution, and genetic-linkage near the Alzheimer locus. Science 235(4791):880–884CrossRefGoogle Scholar
  3. 3.
    Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid-A4 protein resembles a cell-surface receptor. Nature 325(6106):733–736CrossRefGoogle Scholar
  4. 4.
    Boyd-Kimball D, Sultana R, Poon HF, Lynn BC, Casamenti F, Pepeu G, Klein JB, Butterfield DA (2005) Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1-42) into rat brain: implications for Alzheimer’s disease. Neuroscience 132(2):313–324CrossRefGoogle Scholar
  5. 5.
    Butterfield DA, Galvan V, Lange MB, Tang H, Sowell RA, Spilman P, Fombonne J, Gorostiza O, Zhang J, Sultana R, Bredesen DE (2010) In vivo oxidative stress in brain of Alzheimer disease transgenic mice: requirement for methionine 35 in amyloid beta-peptide of APP. Free Radic Biol Med 48(1):136–144CrossRefGoogle Scholar
  6. 6.
    Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23(1):134–147CrossRefGoogle Scholar
  7. 7.
    Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, Perrino P (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzhimer’s disease. Arch Neurol 45(8):836–840CrossRefGoogle Scholar
  8. 8.
    Perry G, Castellani RJ, Smith MA, Harris PL, Kubat Z, Ghanbari K, Jones PK, Cordone G, Tabaton M, Wolozin B, Ghanbari H (2003) Oxidative damage in the olfactory system in Alzheimer’s disease. Acta Neuropathol (Berlin) 106(6):552–556CrossRefGoogle Scholar
  9. 9.
    Ghanbari HA, Ghanbari K, Harris PL, Jones PK, Kubat Z, Castellani RJ, Wolozin BL, Smith MA, Perry G (2004) Oxidative damage in cultured human olfactory neurons from Alzheimer’s disease patients. Aging Cell 3(1):41–44CrossRefGoogle Scholar
  10. 10.
    Mighore L, Fontana I, Trippi F, Colognato R, Coppede F, Tognoni G, Nucciarone B, Siciliano G (2005) Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol Aging 26(5):567–573CrossRefGoogle Scholar
  11. 11.
    Moreira PI, Nunomura A, Nakamura M, Takeda A, Shenk JC, Aliev G, Smith MA, Perry G (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44(8):1493–1505CrossRefGoogle Scholar
  12. 12.
    Sultana R, Mecocci P, Mangialasche F, Cecchetti R, Baglioni M, Butterfield DA (2011) Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer’s disease: insights into the role of oxidative stress in Alzheimer’s disease and initial investigations into a potential biomarker for this dementing disorder. J Alzheimers Dis 24(1):77–84Google Scholar
  13. 13.
    Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD (2005) Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19(12):2040–2041Google Scholar
  14. 14.
    Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp Neurol 218(2):286–292CrossRefGoogle Scholar
  15. 15.
    Sultana R, Butterfield DA (2009) Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairment. J Bioenerg Biomembr 41(5):441–446CrossRefGoogle Scholar
  16. 16.
    Ankarcrona M, Mangialasche F, Winblad B (2010) Rethinking Alzheimer’s disease therapy: are mitochondria the key? J Alzheimers Dis 20(SI, suppl 2):S579–S590Google Scholar
  17. 17.
    Chen KD, Chang PT, Ping YH, Lee HC, Yeh CW, Wang PN (2011) Gene expression profiling of peripheral blood leukocytes identifies and validates ABCB1 as a novel biomarker for Alzheimer’s disease. Neurobiol Dis 43(3):698–705CrossRefGoogle Scholar
  18. 18.
    Hardy JA, Higgings GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185CrossRefGoogle Scholar
  19. 19.
    Zhu X, Raina AK, Perry G, Smith MA (2004) Alzheimer's disease: the two-hit hypothesis. Lancet Neurol 3(4):219–226CrossRefGoogle Scholar
  20. 20.
    McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the NIAA Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7(3):263–269CrossRefGoogle Scholar
  21. 21.
    Gustaw-Rothenberg K, Lerner A, Bonda DJ, Lee HG, Zhu X, Perry G, Smith MA (2010) Biomarkers in Alzheimer’s disease: past, present and future. Biomark Med 4(1):15–26CrossRefGoogle Scholar
  22. 22.
    Reilly J, Rodríguez AD, Lamy M, Neils-Strunjas J (2010) Cognition, language and clinical pathological features of non-Alzheimer’s dementias: an overview. J Commun Disord 43(5):438–452CrossRefGoogle Scholar
  23. 23.
    Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031CrossRefGoogle Scholar
  24. 24.
    Humpel C (2011) Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29(1):26–32CrossRefGoogle Scholar
  25. 25.
    Pivonka DE, Chalmers JM, Griffiths PR (2007) Applications of vibrational spectroscopy in pharmaceutical research and development. Wiley, ChichesterGoogle Scholar
  26. 26.
    Noda I, Ozaki Y (2004) Principle of two-dimensional correlation spectroscopy. In: Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy. Wiley, Chichester, p 15CrossRefGoogle Scholar
  27. 27.
    Luna-Herrera J, Martínez-Cabrera G, Parra-Maldonado R, Enciso-Moreno JA, Torres-López J, Quesada-Pascual F, Delgadillo-Polanco R, Franzblau SG (2003) Use of receiver operating characteristic curves to assess the performance of a microdillution assay for determination of drug susceptibility of clinical isolates of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis 22(1):21–27Google Scholar
  28. 28.
    Pelton JT, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277(2):167–176CrossRefGoogle Scholar
  29. 29.
    Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767(9):1073–1101CrossRefGoogle Scholar
  30. 30.
    Carbonaro M, Nucara A (2010) Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 38(3):679–690CrossRefGoogle Scholar
  31. 31.
    Choo LP, Wetzel DL, Halliday WC, Jackson M, LeVine SM, Mantsch HH (1996) In situ characterization of β-amyloid in Alzheimer’s disease tissue by synchrotron Fourier transform infrared microspectroscopy. Biophys J 71(4):1672–1679CrossRefGoogle Scholar
  32. 32.
    Fabian H, Choo LP, Szendrei GI, Jackson M, Halliday WC, Otvos L Jr, Mantsch HH (1993) Infrared spectroscopic characterization of Alzheimer plaques. Appl Spectrosc 47(9):1513–1518CrossRefGoogle Scholar
  33. 33.
    Barth A, Zscherp C (2002) What vibrations tell us about proteins. Quart Rev Biophys 35(4):369–430CrossRefGoogle Scholar
  34. 34.
    Zandomeneghi G, Krebs MRH, McCammon MG, Fändrich M (2004) FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Sci 13(12):3314–3321CrossRefGoogle Scholar
  35. 35.
    Zhang J, Yan YB (2005) Probing conformational changes of proteins by quantitative second-derivative infrared spectroscopy. Anal Biochem 340(1):89–98CrossRefGoogle Scholar
  36. 36.
    Susi H, Byler M (1986) Resolution-enhanced Fourier-transform infrared spectroscopy of enzymes. Meth Enzym 130:290–311CrossRefGoogle Scholar
  37. 37.
    Helmy R, Zhou GX, Chen YV, Crocker L, Wang T, Menslow RM Jr, Vailaya A (2003) Characterization and quantitation of aprepitant drug substance polymorphs by attenuated total reflectance Fourier transform infrared spectroscopy. Anal Chem 75(3):605–611CrossRefGoogle Scholar
  38. 38.
    Cedazo-Minguez A, Winblad B (2010) Biomarkers for Alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. Exp Gerontol 45(1):5–14CrossRefGoogle Scholar
  39. 39.
    Zetterberg H, Blennow K, Hanse E (2010) Amyloid beta and APP as biomarkers for Alzheimer’s disease. Exp Gerontol 45(1):23–29CrossRefGoogle Scholar
  40. 40.
    Borroni B, Di Luca M, Padovani A (2006) Predicting Alzheimer dementia in mild cognitive impairment patients – are biomarkers useful? Eur J Pharmacol 545(1):73–80CrossRefGoogle Scholar
  41. 41.
    Blasko I, Kemmler G, Krampla W, Jungwirth S, Wichart I, Jellinger K, Tragl KH, Fischer P (2005) Plasma amyloid beta protein 42 in non-demented persons aged 75 years: effects of concomitant medication and medial temporal lobe atrophy. Neurobiol Aging 26(8):1135–1143CrossRefGoogle Scholar
  42. 42.
    Hsiao K, Chapman P, Nilsen S, Eckman K, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Pedro Carmona
    • 1
  • Marina Molina
    • 2
  • Miguel Calero
    • 3
    • 7
  • Félix Bermejo-Pareja
    • 4
    • 7
  • Pablo Martínez-Martín
    • 5
  • Isabel Alvarez
    • 6
  • Adolfo Toledano
    • 6
  1. 1.Instituto de Estructura de la Materia, CSICMadridSpain
  2. 2.Escuela Universitaria de Optica, Universidad ComplutenseMadridSpain
  3. 3.Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
  4. 4.Neurology DepartmentHospital 12 de OctubreMadridSpain
  5. 5.Alzheimer Disease Research Unit and CIBERNEDFundación CIEN – ISCIII, Centro Alzheimer F. Reina SofíaMadridSpain
  6. 6.Instituto Cajal, CSICMadridSpain
  7. 7.CIBERNED, Carlos III National Research InstituteMadridSpain

Personalised recommendations