Advertisement

Analytical and Bioanalytical Chemistry

, Volume 403, Issue 1, pp 27–54 | Cite as

Surface-enhanced Raman spectroscopy (SERS): progress and trends

  • Dana Cialla
  • Anne März
  • René Böhme
  • Frank Theil
  • Karina Weber
  • Michael Schmitt
  • Jürgen PoppEmail author
Review

Abstract

Surface-enhanced Raman spectroscopy (SERS) combines molecular fingerprint specificity with potential single-molecule sensitivity. Therefore, the SERS technique is an attractive tool for sensing molecules in trace amounts within the field of chemical and biochemical analytics. Since SERS is an ongoing topic, which can be illustrated by the increased annual number of publications within the last few years, this review reflects the progress and trends in SERS research in approximately the last three years. The main reason why the SERS technique has not been established as a routine analytic technique, despite its high specificity and sensitivity, is due to the low reproducibility of the SERS signal. Thus, this review is dominated by the discussion of the various concepts for generating powerful, reproducible, SERS-active surfaces. Furthermore, the limit of sensitivity in SERS is introduced in the context of single-molecule spectroscopy and the calculation of the ‘real’ enhancement factor. In order to shed more light onto the underlying molecular processes of SERS, the theoretical description of SERS spectra is also a growing research field and will be summarized here. In addition, the recording of SERS spectra is affected by a number of parameters, such as laser power, integration time, and analyte concentration. To benefit from synergies, SERS is combined with other methods, such as scanning probe microscopy and microfluidics, which illustrates the broad applications of this powerful technique.

Figure

Various SERS substrates visualized using scanning electron microscopy

Keywords

Surface-enhanced Raman spectroscopy (SERS) Plasmonics Plasmonic array Microfluidics Tip-enhanced Raman spectroscopy (TERS) Single-molecule detection SERS enhancement factor Theoretical description of SERS spectra Parameters for SERS detection 

Notes

Acknowledgement

For providing SEM images of various SERS substrates and plasmonic arrays, we thank Franka Jahn, Dr. Uwe Hübner, Isabel Freitag, and Dr. Andrea Csaki (all from IPHT Jena, Germany). Funding of the research project “Photonic Nanomaterials (PhoNa)” within the framework “Spitzenforschung und Innovation in den Neuen Ländern” from the Federal Ministry of Education and Research, Germany (BMBF) is gratefully acknowledged.

References

  1. 1.
    Becht S, Ernst S, Bappert R, Feldmann C (2010) Nanomaterialien zum Anfassen. Chemie Unserer Zeit 44(1):14–23Google Scholar
  2. 2.
    Love SA, Marquis BJ, Haynes CL (2008) Recent advances in nanomaterial plasmonics: fundamental studies and applications. Appl Spectrosc 62(12):346A–362AGoogle Scholar
  3. 3.
    Edwards PP, Thomas JM (2007) Gold in a metallic divided state—from Faraday to present-day nanoscience. Angew Chem Int Ed 46(29):5480–5486. doi: 10.1002/anie.200700428 Google Scholar
  4. 4.
    Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181Google Scholar
  5. 5.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297Google Scholar
  6. 6.
    Schatz GC, Van Duyne RP (2002) Electromagnetic mechanism of surface-enhanced spectroscopy. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chichester, pp 759–774Google Scholar
  7. 7.
    Xia Y, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30(5):338–348Google Scholar
  8. 8.
    Haes AJ, Haynes CL, McFarland AD, Schatz GC, van Duyne RP, Zou S (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30(5):368–375Google Scholar
  9. 9.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New YorkGoogle Scholar
  10. 10.
    Kim SA, Byun KM, Lee J, Kim JH, Kim D-GA, Baac H, Shuler ML, Kim SJ (2008) Optical measurement of neural activity using surface plasmon resonance. Opt Lett 33(9):914–916Google Scholar
  11. 11.
    Lausted C, Hu ZY, Hood L, Campbell CT (2009) SPR imaging for high throughput, label-free interaction analysis. Comb Chem High Throughput Screen 12(8):741–751Google Scholar
  12. 12.
    Hering K, Cialla D, Ackermann K, Dorfer T, Moller R, Schneidewind H, Mattheis R, Fritzsche W, Rosch P, Popp J (2008) SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390(1):113–124. doi: 10.1007/s00216-007-1667-3 Google Scholar
  13. 13.
    Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/ surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37:955–964Google Scholar
  14. 14.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453Google Scholar
  15. 15.
    Huh YS, Chung AJ, Erickson D (2009) Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluid Nanofluid 6(3):285–297Google Scholar
  16. 16.
    Wu D-Y, Li J-F, Ren B, Tian Z-Q (2008) Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev 37(5):1025–1041Google Scholar
  17. 17.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166Google Scholar
  18. 18.
    Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84(1):1–20Google Scholar
  19. 19.
    Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99(15):5215–5217Google Scholar
  20. 20.
    Tong LM, Zhu T, Liu ZF (2011) Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles. Chem Soc Rev 40(3):1296–1304. doi: 10.1039/c001054p Google Scholar
  21. 21.
    Kern AM, Martin OJF (2011) Excitation and reemission of molecules near realistic plasmonic nanostructures. Nano Lett 11(2):482–487. doi: 10.1021/nl1032588 Google Scholar
  22. 22.
    Yoshida K-i, Itoh T, Tamaru H, Biju V, Ishikawa M, Ozaki Y (2010) Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures. Phys Rev B 81(11). doi: 10.1103/PhysRevB.81.115406
  23. 23.
    Itoh T, Yoshida K, Biju V, Kikkawa Y, Ishikawa M, Ozaki Y (2007) Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of anti-stokes and stokes Raman spectra. Phys Rev B 76(8):085405/085401–085405/085405Google Scholar
  24. 24.
    Le Ru EC, Meyer M, Blackie E, Etchegoin PG (2008) Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. J Raman Spectrosc 39(9):1127–1134Google Scholar
  25. 25.
    Le Ru EC, Etchegoin PG (2006) Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy. Chem Phys Lett 423(1–3):63–66Google Scholar
  26. 26.
    Jensen L, Aikens CM, Schatz GC (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 37(5):1061–1073. doi: 10.1039/b706023h Google Scholar
  27. 27.
    Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42(6):734–742. doi: 10.1021/ar800249y Google Scholar
  28. 28.
    Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112(14):5605–5617Google Scholar
  29. 29.
    Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC (2010) Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4(10):5617–5626. doi: 10.1021/nn1010842 Google Scholar
  30. 30.
    Yoshida K, Itoh T, Biju V, Ishikawa M, Ozaki Y (2009) Experimental evaluation of the twofold electromagnetic enhancement theory of surface-enhanced resonance Raman scattering. Phys Rev B 79(8). doi: 10.1103/PhysRevB.79.085419
  31. 31.
    Zhang WH, Fischer H, Schmid T, Zenobi R, Martin OJF (2009) Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas. J Phys Chem C 113(33):14672–14675. doi: 10.1021/jp9042304 Google Scholar
  32. 32.
    Cialla D, Petschulat J, Huebner U, Schneidewind H, Zeisberger M, Mattheis R, Pertsch T, Schmitt M, Moeller R, Popp J (2010) Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays. ChemPhysChem 11(9):1918–1924. doi: 10.1002/cphc.200901009 Google Scholar
  33. 33.
    Kim NJ (2010) Physical origins of chemical enhancement of surface-enhanced Raman spectroscopy on a gold nanoparticle-coated polymer. J Phys Chem C 114(33):13979–13984. doi: 10.1021/jp103360m Google Scholar
  34. 34.
    Avila F, Fernandez DJ, Arenas JF, Otero JC, Soto J (2011) Modelling the effect of the electrode potential on the metal-adsorbate surface states: relevant states in the charge transfer mechanism of SERS. Chem Commun 47(14):4210–4212. doi: 10.1039/c0cc05313a Google Scholar
  35. 35.
    Avila F, Ruano C, Lopez-Tocon I, Arenas JF, Soto J, Otero JC (2011) How the electrode potential controls the selection rules of the charge transfer mechanism of SERS. Chem Commun 47(14):4213–4215. doi: 10.1039/c0cc05314g Google Scholar
  36. 36.
    Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface-enhanced Raman scattering. J Phys Condens Matter 4(5):1143–1212Google Scholar
  37. 37.
    Gao X, Davies JP, Weaver MJ (1990) Test of surface selection rules for surface-enhanced Raman scattering: the orientation of adsorbed benzene and monosubstituted benzenes on gold. J Phys Chem 94(17):6858–6864Google Scholar
  38. 38.
    Moskovits M, Suh JS (1984) Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J Phys Chem 88(23):5526–5530Google Scholar
  39. 39.
    Le Ru EC, Meyer SA, Artur C, Etchegoin PG, Grand J, Lang P, Maurel F (2011) Experimental demonstration of surface selection rules for SERS on flat metallic surfaces. Chem Commun 47(13):3903–3905. doi: 10.1039/c1cc10484e Google Scholar
  40. 40.
    Chen T, Wang H, Chen G, Wang Y, Feng YH, Teo WS, Wu T, Chen HY (2010) Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. ACS Nano 4(6):3087–3094. doi: 10.1021/nn100269v Google Scholar
  41. 41.
    Knoll P, Marchl M, Kiefer W (1988) Raman-spectroscopy of microparticles in laser-light traps. Indian J Pure Appl Phys 26(2–3):268–277Google Scholar
  42. 42.
    Jiang Y, Wang A, Ren B, Tian ZQ (2008) Cantilever tip near-field surface-enhanced Raman imaging of tris(bipyridine)ruthenium(II) on silver nanoparticles-coated substrates. Langmuir 24(20):12054–12061. doi: 10.1021/la801376p Google Scholar
  43. 43.
    Ayars EJ, Hallen HD (2000) Electric field gradient effects in Raman spectroscopy. Phys Rev Lett 85(19):4180–4183Google Scholar
  44. 44.
    Lin XM, Cui Y, Xu YH, Ren B, Tian ZQ (2009) Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem 394(7):1729–1745. doi: 10.1007/s00216-009-2761-5 Google Scholar
  45. 45.
    Brown RJC, Milton MJT (2008) Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J Raman Spectrosc 39(10):1313–1326. doi: 10.1002/jrs.2030 Google Scholar
  46. 46.
    Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37(5):885–897Google Scholar
  47. 47.
    Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanana R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37(5):1001–1011. doi: 10.1039/b708461g Google Scholar
  48. 48.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379Google Scholar
  49. 49.
    Doerfer T, Schmitt M, Popp J (2007) Deep-UV surface-enhanced Raman scattering. J Raman Spectrosc 38:1379–1382Google Scholar
  50. 50.
    Cui L, Wang A, Wu DY, Ren B, Tian ZQ (2008) Shaping and shelling Pt and Pd nanoparticles for ultraviolet laser excited surface-enhanced Raman scattering. J Phys Chem C 112(45):17618–17624. doi: 10.1021/jp804997y Google Scholar
  51. 51.
    Cui L, Mahajan S, Cole RM, Soares B, Bartlett PN, Baumberg JJ, Hayward IP, Ren B, Russell AE, Tian ZQ (2009) UV SERS at well ordered Pd sphere segment void (SSV) nanostructures. Phys Chem Chem Phys 11(7):1023–1026. doi: 10.1039/b817803h Google Scholar
  52. 52.
    Bohren CF, Huffmann DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  53. 53.
    Luo Y, Aubry A, Pendry JB (2011) Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach. Phys Rev B 83(15):155442. doi: 10.1103/PhysRevB.83.155422 Google Scholar
  54. 54.
    Yang Z, Li Q, Ruan F, Li Z, Ren B, Xu H, Tian Z (2010) FDTD for plasmonics: applications in enhanced Raman spectroscopy. Chin Sci Bull 55(24):2635–2642. doi: 10.1007/s11434-010-4044-0 Google Scholar
  55. 55.
    Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG (2010) MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput Phys Commun 181(3):687–702. doi: 10.1016/j.cpc.2009.11.008 Google Scholar
  56. 56.
    Jin JM (2002) The finite element method in electromagnetics, 2nd edn. Wiley, New YorkGoogle Scholar
  57. 57.
    Li LF (2003) Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J Opt A Pure Appl Opt 5(4):345–355. doi: 10.1088/1464-4258/5/4/307 Google Scholar
  58. 58.
    Zenidaka A, Tanaka Y, Miyanishi T, Terakawa M, Obara M (2011) Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates. Appl Phys A Mater Sci Process 103(1):225–231. doi: 10.1007/s00339-010-6002-8 Google Scholar
  59. 59.
    Hu WF, Zou SL (2011) Proposed substrates for reproducible surface-enhanced Raman scattering detection. J Phys Chem C 115(11):4523–4532. doi: 10.1021/jp1110373 Google Scholar
  60. 60.
    Vernon KC, Davis TJ, Scholes FH, Gomez DE, Lau D (2010) Physical mechanisms behind the SERS enhancement of pyramidal pit substrates. J Raman Spectrosc 41(10):1106–1111. doi: 10.1002/jrs.2557 Google Scholar
  61. 61.
    Chen SQ, Han L, Schulzgen A, Li HB, Li L, Moloney JV, Peyghambarian N (2008) Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure. Opt Express 16(17):13016–13023Google Scholar
  62. 62.
    Vo-Dinh T, Dhawan A, Norton SJ, Khoury CG, Wang H-N, Misra V, Gerhold MD (2010) Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing. J Phys Chem C 114(16):7480–7488. doi: 10.1021/jp911355q Google Scholar
  63. 63.
    Liao PF, Wokaun A (1982) Lightning rod effect in surface enhanced Raman scattering. J Chem Phys 76(1):751–752Google Scholar
  64. 64.
    Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2(4):707–718. doi: 10.1021/nn800047e Google Scholar
  65. 65.
    Futamata M, Yu YY, Yajima T (2011) Elucidation of electrostatic interaction between cationic dyes and Ag nanoparticles generating enormous SERS enhancement in aqueous solution. J Phys Chem C 115(13):5271–5279. doi: 10.1021/jp110146y Google Scholar
  66. 66.
    Gehan H, Fillaud L, Chehimi MM, Aubard J, Hohenau A, Felidj N, Mangeney C (2010) Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced Raman scattering. ACS Nano 4(11):6491–6500. doi: 10.1021/nn101451q Google Scholar
  67. 67.
    Li XH, Wang J, Zhang YX, Li MQ, Liu JH (2010) Surfactant less synthesis and the surface-enhanced Raman spectra and catalytic activity of differently shaped silver nanomaterials. Eur J Inorg Chem 12:1806–1812. doi: 10.1002/ejic.200901114 Google Scholar
  68. 68.
    Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107(24):5723–5727. doi: 10.1021/jp027460u Google Scholar
  69. 69.
    Prucek R, Panacek A, Soukupova J, Novotny R, Kvitek L (2011) Reproducible synthesis of silver colloidal particles tailored for application in near-infrared surface-enhanced Raman spectroscopy. J Mater Chem 21(17):6416–6420. doi: 10.1039/c0jm03870a Google Scholar
  70. 70.
    Jarvis RM, Johnson HE, Olembe E, Panneerselvam A, Malik MA, Afzaal M, O'Brien P, Goodacre R (2008) Towards quantitatively reproducible substrates for SERS. Analyst 133(10):1449–1452. doi: 10.1039/b800340h Google Scholar
  71. 71.
    Yaffe NR, Blanch EW (2008) Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids. Vib Spectrosc 48(2):196–201. doi: 10.1016/j.vibspec.2007.12.002 Google Scholar
  72. 72.
    Zhou J, An J, Tang B, Xu SP, Cao YX, Zhao B, Xu WQ, Chang JJ, Lombardi JR (2008) Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement. Langmuir 24(18):10407–10413. doi: 10.1021/la800961j Google Scholar
  73. 73.
    Zeng JB, Jia HY, An J, Han XX, Xu WQ, Zhao B, Ozaki Y (2008) Preparation and SERS study of triangular silver nanoparticle self-assembled films. J Raman Spectrosc 39(11):1673–1678. doi: 10.1002/jrs.2079 Google Scholar
  74. 74.
    Esenturk EN, Walker ARH (2009) Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectrosc 40(1):86–91. doi: 10.1002/jrs.2084 Google Scholar
  75. 75.
    Rodriguez-Lorenzo L, Alvarez-Puebla RA, Garcia J, de Abajo F, Liz-Marzan LM (2010) Surface enhanced Raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 114(16):7336–7340. doi: 10.1021/jp909253w Google Scholar
  76. 76.
    Merga G, Saucedo N, Cass LC, Puthussery J, Meisel D (2010) “Naked” gold nanoparticles: synthesis, characterization, catalytic hydrogen evolution, and SERS. J Phys Chem C 114(35):14811–14818. doi: 10.1021/jp104922a Google Scholar
  77. 77.
    Chen HJ, Wang YL, Dong SJ (2009) Synthesis of different gold nanostructures by solar radiation and their SERS spectroscopy. J Raman Spectrosc 40(9):1188–1193. doi: 10.1002/jrs.2259 Google Scholar
  78. 78.
    Huang T, Meng F, Qi LM (2009) Facile synthesis and one-dimensional assembly of cyclodextrin-capped gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering. J Phys Chem C 113(31):13636–13642. doi: 10.1021/jp903405y Google Scholar
  79. 79.
    Mohapatra S, Siddhanta S, Kumar DR, Narayana C, Maji TK (2010) Facile and green synthesis of SERS active and ferromagnetic silver nanorods. Eur J Inorg Chem 31:4969–4974. doi: 10.1002/ejic.201000540 Google Scholar
  80. 80.
    Li WB, Guo YY, Zhang P (2010) SERS-active silver nanoparticles prepared by a simple and green method. J Phys Chem C 114(14):6413–6417. doi: 10.1021/jp100526v Google Scholar
  81. 81.
    Erol M, Han Y, Stanley SK, Stafford CM, Du H, Sukhishvili S (2009) SERS not to be taken for granted in the presence of oxygen. J Am Chem Soc 131(22):7480–7481. doi: 10.1021/ja807458x Google Scholar
  82. 82.
    Jana S, Pande S, Sinha AK, Sarkar S, Pradhan M, Basu M, Saha S, Pal T (2009) A green chemistry approach for the synthesis of flower-like Ag-doped MnO2 nanostructures probed by surface-enhanced Raman spectroscopy. J Phys Chem C 113(4):1386–1392. doi: 10.1021/jp809561p Google Scholar
  83. 83.
    Jena BK, Raj CR (2008) Seedless, surfactantless room temperature synthesis of single crystalline fluorescent gold nanoflowers with pronounced SERS and electrocatalytic activity. Chem Mater 20(11):3546–3548. doi: 10.1021/cm7019608 Google Scholar
  84. 84.
    Gutes A, Carraro C, Maboudian R (2009) Silver nanodesert rose as a substrate for surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces 1(11):2551–2555. doi: 10.1021/am9004754 Google Scholar
  85. 85.
    Jena BK, Mishra BK, Bohidar S (2009) Synthesis of branched Ag nanoflowers based on a bioinspired technique: their surface enhanced Raman scattering and antibacterial activity. J Phys Chem C 113(33):14753–14758. doi: 10.1021/jp904689f Google Scholar
  86. 86.
    Zhu CH, Meng GW, Huang Q, Zhang Z, Xu QL, Liu GQ, Huang ZL, Chu ZQ (2011) Ag nanosheet-assembled micro-hemispheres as effective SERS substrates. Chem Commun 47(9):2709–2711. doi: 10.1039/c0cc04482b Google Scholar
  87. 87.
    Kim JH, Kang T, Yoo SM, Lee SY, Kim B, Choi YK (2009) A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering. Nanotechnology 20(23):235302. doi: 10.1088/0957-4484/20/23/235302 Google Scholar
  88. 88.
    Sajanlal PR, Pradeep T (2010) Bimetallic mesoflowers: region-specific overgrowth and substrate dependent surface-enhanced Raman scattering at single particle level. Langmuir 26(11):8901–8907. doi: 10.1021/la904676u Google Scholar
  89. 89.
    Sarkar S, Pradhan M, Sinha AK, Basu M, Negishi Y, Pal T (2010) An aminolytic approach toward hierarchical beta-Ni(OH)(2) nanoporous architectures: a bimodal forum for photocatalytic and surface-enhanced Raman scattering activity. Inorg Chem 49(19):8813–8827. doi: 10.1021/ic1015065 Google Scholar
  90. 90.
    Wang LM, Wang LH, Tan EZ, Li LD, Guo L, Han XD (2011) Flower-shaped PdI2 nanomaterials with remarkable surface-enhanced Raman scattering activity. J Mater Chem 21(7):2369–2373. doi: 10.1039/c0jm02610g Google Scholar
  91. 91.
    Mack NH, Bailey JA, Doorn SK, Chen CA, Gau HM, Xu P, Williams DJ, Akhadov EA, Wang HL (2011) Mechanistic study of silver nanoparticle formation on conducting polymer surfaces. Langmuir 27(8):4979–4985. doi: 10.1021/la103644j Google Scholar
  92. 92.
    Hering KK, Moller R, Fritzsche W, Popp J (2008) Microarray-based detection of dye-labeled DNA by SERRS using particles formed by enzymatic silver deposition. ChemPhysChem 9(6):867–872. doi: 10.1002/cphc.200700591 Google Scholar
  93. 93.
    Strelau KK, Schuler T, Moller R, Fritzsche W, Popp J (2010) Novel bottom-up SERS substrates for quantitative and parallelized analytics. ChemPhysChem 11(2):394–398. doi: 10.1002/cphc.200900867 Google Scholar
  94. 94.
    Strelau KK, Brinker A, Schnee C, Weber K, Moller R, Popp J (2011) Detection of PCR products amplified from DNA of epizootic pathogens using magnetic nanoparticles and SERS. J Raman Spectrosc 42(3):243–250. doi: 10.1002/jrs.2730 Google Scholar
  95. 95.
    Fang JX, Du SY, Lebedkin S, Li ZY, Kruk R, Kappes M, Hahn H (2010) Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett 10(12):5006–5013. doi: 10.1021/nl103161q Google Scholar
  96. 96.
    Ye WC, Shen CM, Tian JF, Wang CM, Hui C, Gao HJ (2009) Controllable growth of silver nanostructures by a simple replacement reaction and their SERS studies. Solid State Sci 11(6):1088–1093. doi: 10.1016/j.solidstatesciences.2009.03.001 Google Scholar
  97. 97.
    Xia YY, Wang JM (2011) Hierarchical silver nanodendrites: one-step preparation and application for SERS. Mater Chem Phys 125(1–2):267–270. doi: 10.1016/j.matchemphys.2010.09.022 Google Scholar
  98. 98.
    Hu YW, Liu S, Huang SY, Pan W (2010) Superhydrophobicity and surface enhanced Raman scattering activity of dendritic silver layers. Thin Solid Films 519(4):1314–1318. doi: 10.1016/j.tsf.2010.09.033 Google Scholar
  99. 99.
    Wang L, Li HL, Tian JQ, Sun XP (2010) Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Appl Mater Interfaces 2(11):2987–2991. doi: 10.1021/am100968j Google Scholar
  100. 100.
    Lee K, Irudayaraj J (2009) Periodic and dynamic 3-D gold nanoparticle-DNA network structures for surface-enhanced Raman spectroscopy-based quantification. J Phys Chem C 113(15):5980–5983. doi: 10.1021/jp809949v Google Scholar
  101. 101.
    Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzan LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3(4):1304–1315. doi: 10.1039/c0nr00804d Google Scholar
  102. 102.
    Qian XM, Zhou X, Nie SM (2008) Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J Am Chem Soc 130(45):14934–14935. doi: 10.1021/ja8062502 Google Scholar
  103. 103.
    Graham D, Thompson DG, Smith WE, Faulds K (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3(9):548–551. doi: 10.1038/nnano.2008.189 Google Scholar
  104. 104.
    Thompson DG, Faulds K, Smith WE, Graham D (2010) Precise control of the assembly of dye-coded oligonucleotide silver nanoparticle conjugates with single base mismatch discrimination using surface enhanced resonance Raman scattering. J Phys Chem C 114(16):7384–7389. doi: 10.1021/jp909639b Google Scholar
  105. 105.
    Lee K, Drachev VP, Irudayaraj J (2011) DNA-gold nanoparticle reversible networks grown on cell surface marker sites: application in diagnostics. ACS Nano 5(3):2109–2117. doi: 10.1021/nn1030862 Google Scholar
  106. 106.
    Zhang ZL, Wen YQ, Ma Y, Luo J, Zhang XY, Jiang L, Song YL (2011) Enhanced nanoparticle-oligonucleotide conjugates for DNA nanomachine controlled surface-enhanced Raman scattering switch. Appl Phys Lett 98(13):133704. doi: 10.1063/1.3573827 Google Scholar
  107. 107.
    McKenzie F, Faulds K, Graham D (2010) Mixed metal nanoparticle assembly and the effect on surface-enhanced Raman scattering. Nanoscale 2(1):78–80. doi: 10.1039/b9nr00211a Google Scholar
  108. 108.
    Fan JA, Wu CH, Bao K, Bao JM, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328(5982):1135–1138. doi: 10.1126/science.1187949 Google Scholar
  109. 109.
    Stoerzinger KA, Hasan W, Lin JY, Robles A, Odom TW (2010) Screening nanopyramid assemblies to optimize surface enhanced Raman scattering. J Phys Chem Lett 1:1046–1050Google Scholar
  110. 110.
    Kneipp J, Li XT, Sherwood M, Panne U, Kneipp H, Stockman MI, Kneipp K (2008) Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing. Anal Chem 80(11):4247–4251. doi: 10.1021/ac8002215 Google Scholar
  111. 111.
    Sisco PN, Murphy CJ (2009) Surface-coverage dependence of surface-enhanced Raman scattering from gold nanocubes on self-assembled monolayers of analyte. J Phys Chem A 113(16):3973–3978. doi: 10.1021/jp810329j Google Scholar
  112. 112.
    Fan M, Brolo AG (2009) Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys Chem Chem Phys 11(34):7381–7389. doi: 10.1039/b904744a Google Scholar
  113. 113.
    Kinnan MK, Chumanov G (2007) Surface enhanced Raman scattering from silver nanoparticle arrays on silver mirror films: plasmon-induced electronic coupling as the enhancement mechanism. J Phys Chem C 111(49):18010–18017. doi: 10.1021/jp074002i Google Scholar
  114. 114.
    Mahmoud MA, Tabor CE, El-Sayed MA (2009) Surface-enhanced Raman scattering enhancement by aggregated silver nanocube monolayers assembled by the Langmuir-Blodgett technique at different surface pressures. J Phys Chem C 113(14):5493–5501. doi: 10.1021/jp900648r Google Scholar
  115. 115.
    Wang M-H, Hu J-W, Li Y-J, Yeung ES (2010) Au nanoparticle monolayers: preparation, structural conversion and their surface-enhanced Raman scattering effects. Nanotechnology 21(14):145608Google Scholar
  116. 116.
    Margueritat J, Gehan H, Grand J, Levi G, Aubard J, Felidj N, Bouhelier A, Colas-Des-Francs G, Markey L, De Lucas CM, Dereux A, Finot E (2011) Influence of the number of nanoparticles on the enhancement properties of surface-enhanced Raman scattering active area: sensitivity versus repeatability. ACS Nano 5(3):1630–1638. doi: 10.1021/nn103256t Google Scholar
  117. 117.
    Zhu ZN, Meng HF, Liu WJ, Liu XF, Gong JX, Qiu XH, Jiang L, Wang D, Tang ZY (2011) Superstructures and SERS properties of gold nanocrystals with different shapes. Angew Chem 123:1631–1634. doi: 10.1002/anie.201005493 Google Scholar
  118. 118.
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287):392–395. doi: 10.1038/nature08907 Google Scholar
  119. 119.
    Tao X, Lu L, Shao M, Huang X (2009) Silver nanowire film: green synthesis and its surface enhanced Raman scattering. Chin J Chem 27(5):891–894Google Scholar
  120. 120.
    Fang C, Agarwal A, Ji H, Karen WY, Yobas L (2009) Preparation of a SERS substrate and its sample-loading method for point-of-use application. Nanotechnology 20(40):405604. doi: 10.1088/0957-4484/20/40/405604 Google Scholar
  121. 121.
    Huang BB, Wang JY, Huo SJ, Cai WB (2008) Facile fabrication of silver nanoparticles on silicon for surface-enhanced infrared and Raman analysis. Surf Interface Anal 40(2):81–84. doi: 10.1002/sia.2742 Google Scholar
  122. 122.
    Yang C, Xie YT, Yuen MMF, Xiong XM, Wong CP (2010) A facile chemical approach for preparing a SERS active silver substrate. Phys Chem Chem Phys 12(43):14459–14461. doi: 10.1039/c0cp00414f Google Scholar
  123. 123.
    Lin CH, Jiang L, Chai YH, Xiao H, Chen SJ, Tsai HL (2009) One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering. Opt Express 17(24):21581–21589Google Scholar
  124. 124.
    Christou K, Knorr I, Ihlemann J, Wackerbarth H, Beushausen V (2010) Fabrication and characterization of homogeneous surface-enhanced Raman scattering substrates by single pulse UV-laser treatment of gold and silver films. Langmuir 26(23):18564–18569. doi: 10.1021/la103021g Google Scholar
  125. 125.
    Liu YJ, Zhang ZY, Zhao Q, Dluhy RA, Zhao YP (2009) Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect. J Phys Chem C 113(22):9664–9669. doi: 10.1021/jp902142y Google Scholar
  126. 126.
    Yu WW, White IM (2010) Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal Chem 82(23):9626–9630. doi: 10.1021/ac102475k Google Scholar
  127. 127.
    Talian I, Mogensen KB, Orinak A, Kaniansky D, Hubner J (2009) Surface-enhanced Raman spectroscopy on novel black silicon-based nanostructured surfaces. J Raman Spectrosc 40(8):982–986. doi: 10.1002/jrs.2213 Google Scholar
  128. 128.
    Garrett NL, Vukusic P, Ogrin F, Sirotkin E, Winlove CP, Moger J (2009) Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis. J Biophotonics 2(3):157–166. doi: 10.1002/jbio.200810057 Google Scholar
  129. 129.
    Yang DP, Chen SH, Huang P, Wang XS, Jiang WQ, Pandoli O, Cui DX (2010) Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. Green Chem 12(11):2038–2042. doi: 10.1039/c0gc00431f Google Scholar
  130. 130.
    Zhang X, Zhao J, Whitney AV, Elam JW, Van Duyne RP (2006) Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J Am Chem Soc 128(31):10304–10309Google Scholar
  131. 131.
    Baia L, Baia M, Popp J, Astilean S (2006) Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J Phys Chem B 110(47):23982–23986Google Scholar
  132. 132.
    Rao YY, Chen QF, Dong JA, Qian WP (2011) Growth-sensitive 3D ordered gold nanoshells precursor composite arrays as SERS nanoprobes for assessing hydrogen peroxide scavenging activity. Analyst 136(4):769–774. doi: 10.1039/c0an00725k Google Scholar
  133. 133.
    Du YB, Shi LF, He TC, Sun XW, Mo YJ (2008) SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template. Appl Surf Sci 255(5):1901–1905. doi: 10.1016/j.apsusc.2008.06.140 Google Scholar
  134. 134.
    Chang SH, Ko HH, Singamaneni S, Gunawidjaja R, Tsukruk VV (2009) Nanoporous membranes with mixed nanoclusters for Raman-based label-free monitoring of peroxide compounds. Anal Chem 81(14):5740–5748. doi: 10.1021/ac900537d Google Scholar
  135. 135.
    Luo Z, Peng A, Fu H, Ma Y, Yao J, Loo BH (2008) An application of AAO template: orderly assembled organic molecules for surface-enhanced Raman scattering. J Mater Chem 18(1):133–138. doi: 10.1039/b715461e Google Scholar
  136. 136.
    Mu C, Zhang JP, Xu DS (2010) Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology 21(1):015604. doi: 10.1088/0957-4484/21/1/015604 Google Scholar
  137. 137.
    Qin Y, Pan AL, Liu LF, Moutanabbir O, Bin Yang R, Knez M (2011) Atomic layer deposition assisted template approach for electrochemical synthesis of Au crescent-shaped half-nanotubes. ACS Nano 5(2):788–794. doi: 10.1021/nn102879s Google Scholar
  138. 138.
    Baia M, Baia L, Astilean S, Popp J (2006) Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings. Appl Phys Lett 88(14):143121/143121–143121/143123Google Scholar
  139. 139.
    Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127(7):2264–2271Google Scholar
  140. 140.
    Mahajan S, Cole RM, Soares BF, Pelfrey SH, Russell AE, Baumberg JJ, Bartlett PN (2009) Relating SERS intensity to specific plasmon modes on sphere segment void surfaces. J Phys Chem C 113(21):9284–9289. doi: 10.1021/jp900661u Google Scholar
  141. 141.
    Chang WY, Lin KH, Wu JT, Yang SY, Lee KL, Wei PK (2011) Novel fabrication of an Au nanocone array on polycarbonate for high performance surface-enhanced Raman scattering. J Micromech Microeng 21(3):035023. doi: 10.1088/0960-1317/21/3/035023 Google Scholar
  142. 142.
    Schroeder K, Csaki A, Schwuchow A, Jahn F, Strelau K, Latka I, Henkel T, Malsch D, Schuster K, Weber K, Schneider T, Moller R, Fritzsche W (2011) Functionalization of microstructured optical fibers by internal nanoparticle coating for plasmonic biosensor applications. IEEE Sensors J. doi: 10.1109/JSEN.2011.2144580
  143. 143.
    Schweikart A, Pazos-Perez N, Alvarez-Puebla RA, Fery A (2011) Controlling inter-nanoparticle coupling by wrinkle-assisted assembly. Soft Matter 7(9):4093–4100. doi: 10.1039/c0sm01359e Google Scholar
  144. 144.
    Liberman V, Yilmaz C, Bloomstein TM, Somu S, Echegoyen Y, Busnaina A, Cann SG, Krohn KE, Marchant MF, Rothschild M (2010) A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates. Adv Mater 22(38):4298–4302. doi: 10.1002/adma.201001670 Google Scholar
  145. 145.
    Cerf A, Molnar G, Vieu C (2009) Novel approach for the assembly of highly efficient SERS substrates. ACS Appl Mater Interfaces 1(11):2544–2550. doi: 10.1021/am900476d Google Scholar
  146. 146.
    Balint S, Kreuzer MP, Rao S, Badenes G, Miskovsky P, Petrov D (2009) Simple route for preparing optically trappable probes for surface-enhanced Raman scattering. J Phys Chem C 113(41):17724–17729. doi: 10.1021/jp906318n Google Scholar
  147. 147.
    Hwang H, Kim SH, Yang SM (2011) Microfluidic fabrication of SERS-active microspheres for molecular detection. Lab Chip 11(1):87–92. doi: 10.1039/c0lc00125b Google Scholar
  148. 148.
    He D, Hu B, Yao QF, Wang K, Yu SH (2009) Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 3(12):3993–4002. doi: 10.1021/nn900812f Google Scholar
  149. 149.
    Hwang JS, Chen KY, Hong SJ, Chen SW, Syu WS, Kuo CW, Syu WY, Lin TY, Chiang HP, Chattopadhyay S, Chen KH, Chen LC (2010) The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates. Nanotechnology 21(2):025502. doi: 10.1088/0957-4484/21/2/025502 Google Scholar
  150. 150.
    Tran ML, Centeno SP, Hutchison JA, Engelkamp H, Liang D, Van Tendeloo G, Sels BF, Hofkens J, Uji-i H (2008) Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires. J Am Chem Soc 130(51):17240–17241. doi: 10.1021/ja807218e Google Scholar
  151. 151.
    Marquestaut N, Martin A, Talaga D, Servant L, Ravaine S, Reculusa S, Bassani DM, Gillies E, Lagugné-Labarthet F (2008) Raman enhancement of azobenzene monolayers on substrates prepared by Langmuir-Blodgett deposition and electron-beam lithography techniques. Langmuir 24(19):11313–11321Google Scholar
  152. 152.
    Huebner U, Boucher R, Schneidewind H, Cialla D, Popp J (2008) Microfabricated SERS-arrays with sharp-edged metallic nanostructures. Microelectron Eng 85:1792–1794Google Scholar
  153. 153.
    Connatser RM, Cochran M, Harrison RJ, Sepaniak MJ (2008) Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices. Electrophoresis 29(7):1441–1450. doi: 10.1002/elps.200700585 Google Scholar
  154. 154.
    Wu M-C, Chou Y, Chuang C-M, Hsu C-P, Lin J-F, Chen Y-F, Su W-F (2009) High-sensitivity Raman scattering substrate based on Au/La0.7Sr0.3MnO3 periodic arrays. ACS Appl Mater Interfaces 1(11):2484–2490Google Scholar
  155. 155.
    Huebner U, Weber K, Cialla D, Schneidewind H, Zeisberger M, Meyer HG, Popp J (2011) Fabrication and characterization of silver deposited micro fabricated quartz arrays for surface enhanced Raman spectroscopy (SERS). Microelectron Eng 88:1761–1763Google Scholar
  156. 156.
    Lee SW, Shin Y-B, Jeon KS, Jin SM, Suh YD, Kim S, Lee JJ, Kim M-G (2008) Electron beam lithography-assisted fabrication of Au nano-dot array as a substrate of a correlated AFM and confocal Raman spectroscopy. Ultramicroscopy 108(10):1302–1306Google Scholar
  157. 157.
    Yokota Y, Ueno K, Juodkazis S, Mizeikis V, Murazawa N, Misawa H, Kasa H, Kintaka K, Nishii J (2009) Nano-textured metallic surfaces for optical sensing and detection applications. J Photochem Photobiol A Chem 207(1):126–134Google Scholar
  158. 158.
    Beermann J, Novikov SM, Leosson K, Bozhevolnyi SI (2009) Surface enhanced Raman microscopy with metal nanoparticle arrays. J Opt A Pure Appl Opt 11(7):075004/075001–075004/075005Google Scholar
  159. 159.
    Cialla D, Siebert R, Hubner U, Moller R, Schneidewind H, Mattheis R, Petschulat J, Tunnermann A, Pertsch T, Dietzek B, Popp J (2009) Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates. Anal Bioanal Chem 394(7):1811–1818. doi: 10.1007/s00216-009-2749-1 Google Scholar
  160. 160.
    Cialla D, Huebner U, Schneidewind H, Moeller R, Popp J (2008) Probing innovative microfabricated substrates for their reproducible SERS activity. ChemPhysChem 9(5):758–762Google Scholar
  161. 161.
    Hou Y, Xu J, Zhang X, Yu D (2010) SERS on periodic arrays of coupled quadrate-holes and squares. Nanotechnology 21(19):195203Google Scholar
  162. 162.
    Beermann J, Novikov SM, Leosson K, Bozhevolnyi SI (2009) Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles. Opt Express 17(15):12698–12705Google Scholar
  163. 163.
    Oran JM, Hinde RJ, Abu Hatab N, Retterer ST, Sepaniak MJ (2008) Nanofabricated periodic arrays of silver elliptical discs as SERS substrates. J Raman Spectrosc 39(12):1811–1820Google Scholar
  164. 164.
    Yu Q, Guan P, Qin D, Golden G, Wallace PM (2008) Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8(7):1923–1928Google Scholar
  165. 165.
    Li KB, Clime LV, Cui B, Veres T (2008) Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays. Nanotechnology 19(14):145305. doi: 10.1088/0957-4484/19/14/145305 Google Scholar
  166. 166.
    Li K, Clime L, Tay L, Cui B, Geissler M, Veres T (2008) Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells. Anal Chem 80(13):4945–4950Google Scholar
  167. 167.
    Galarreta BC, Harte E, Marquestaut N, Norton PR, Lagugne-Labarthet F (2010) Plasmonic properties of Fischer’s patterns: polarization effects. Phys Chem Chem Phys 12(25):6810–6816. doi: 10.1039/b925923f Google Scholar
  168. 168.
    Stosch R, Yaghobian F, Weimann T, Brown RJC, Milton MJT, Guttler B (2011) Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers. Nanotechnology 22(10):105303. doi: 10.1088/0957-4484/22/10/105303 Google Scholar
  169. 169.
    Jin ML, Pully V, Otto C, van den Berg A, Carlen ET (2010) High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced Raman spectroscopy. J Phys Chem C 114(50):21953–21959. doi: 10.1021/jp106245a Google Scholar
  170. 170.
    Choi S, Yan MJ, Adesida I, Hsu KH, Fang NX (2009) Ultradense gold nanostructures fabricated using hydrogen silsesquioxane resist and applications for surface-enhanced Raman spectroscopy. J Vac Sci Technol B 27(6):2640–2643. doi: 10.1116/1.3253610 Google Scholar
  171. 171.
    Wells SM, Retterer SD, Oran JM, Sepaniak MJ (2009) Controllable nanotabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy. ACS Nano 3(12):3845–3853. doi: 10.1021/nn9010939 Google Scholar
  172. 172.
    Beermann J, Novikov SM, Albrektsen O, Nielsen MG, Bozhevolnyi SI (2009) Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures. J Opt Soc Am B Opt Phys 26(12):2370–2376Google Scholar
  173. 173.
    Gopinath A, Boriskina SV, Premasiri WR, Ziegler L, Reinhard BM, Dal Negro L (2009) Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing. Nano Lett 9(11):3922–3929. doi: 10.1021/nl902134r Google Scholar
  174. 174.
    Hartling T, Alaverdyan Y, Hille A, Wenzel MT, Kall M, Eng LM (2008) Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition. Opt Express 16(16):12362–12371Google Scholar
  175. 175.
    Das G, Mecarini F, Gentile F, De Angelis F, Mohan Kumar HG, Candeloro P, Liberale C, Cuda G, Di Fabrizio E (2009) Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens Bioelectron 24(6):1693–1699Google Scholar
  176. 176.
    Cui B, Clime L, Li K, Veres T (2008) Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy. Nanotechnology 19(14):145302. doi: 10.1088/0957-4484/19/14/145302 Google Scholar
  177. 177.
    Lin DZ, Chen YP, Jhuang PJ, Chu JY, Yeh JT, Wang JK (2011) Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates. Opt Express 19(5):4337–4345Google Scholar
  178. 178.
    Abu Hatab NA, Oran JM, Sepaniak MJ (2008) Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2(2):377–385. doi: 10.1021/nn7003487 Google Scholar
  179. 179.
    Stoddart PR, White DJ (2009) Optical fibre SERS sensors. Anal Bioanal Chem 394(7):1761–1774. doi: 10.1007/s00216-009-2797-6 Google Scholar
  180. 180.
    Shi C, Zhang Y, Gu C, Chen B, Seballos L, Olson T, Zhang JZ (2009) Molecular fiber sensors based on surface enhanced Raman scattering (SERS). J Nanosci Nanotechnol 9(4):2234–2246. doi: 10.1166/jnn.2009.SE41 Google Scholar
  181. 181.
    Kostovski G, Chinnasamy U, Jayawardhana S, Stoddart PR, Mitchell A (2011) Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach. Adv Mater 23(4):531–535. doi: 10.1002/adma.201002796 Google Scholar
  182. 182.
    Smythe EJ, Dickey MD, Bao J, Whitesides GM, Capasso F (2009) Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett 9(3):1132–1138Google Scholar
  183. 183.
    Guieu V, Talaga D, Servant L, Sojic N, Lagugne-Labarthet F (2009) Multitip-localized enhanced Raman scattering from a nanostructured optical fiber array. J Phys Chem C 113(3):874–881. doi: 10.1021/jp808839f Google Scholar
  184. 184.
    Petschulat J, Cialla D, Janunts N, Rockstuhl C, Hübner U, Möller R, Schneidewind H, Mattheis R, Popp J, Tünnermann A, Lederer F, Pertsch T (2010) Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering. Opt Express 18(5):4184–4197Google Scholar
  185. 185.
    Kocabas A, Ertas G, Senlik AS, Aydinli A (2008) Plasmonic band gap structures for surface-enhanced Raman scattering. Opt Express 16(17):12469–12477Google Scholar
  186. 186.
    Chu YZ, Banaee MG, Crozier KB (2010) Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 4(5):2804–2810. doi: 10.1021/nn901826q Google Scholar
  187. 187.
    Liu Y, Xu SP, Li HB, Jian XG, Xu WQ (2011) Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation. Chem Commun 47(13):3784–3786. doi: 10.1039/c0cc04988c Google Scholar
  188. 188.
    Tian M, Lu P, Schulzgen A, Peyghambarian N, Liu DM (2011) Double-resonance plasmon and polarization effects in a SERS fiber sensor with a grid nanostructure. Opt Commun 284(7):2061–2064. doi: 10.1016/j.optcom.2010.12.038 Google Scholar
  189. 189.
    Banaee MG, Crozier KB (2011) Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy. ACS Nano 5(1):307–314. doi: 10.1021/nn102726j Google Scholar
  190. 190.
    Schlucker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10(9–10):1344–1354. doi: 10.1002/cphc.200900119 Google Scholar
  191. 191.
    Küstner B, Gellner M, Schütz M, Schöppler F, Marx A, Ströbel P, Adam P, Schmuck C, Schlücker S (2009) SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew Chem Int Ed 48(11):1950–1953Google Scholar
  192. 192.
    Brown LO, Doorn SK (2008) A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing. Langmuir 24(6):2277–2280. doi: 10.1021/la703853e Google Scholar
  193. 193.
    Boca S, Rugina D, Pintea A, Barbu-Tudoran L, Astilean S (2011) Flower-shaped gold nanoparticles: synthesis, characterization and their application as SERS-active tags inside living cells. Nanotechnology 22(5):055702. doi: 10.1088/0957-4484/22/5/055702 Google Scholar
  194. 194.
    Xiao M, Nyagilo J, Arora V, Kulkarni P, Xu DS, Sun XK, Dave DP (2010) Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography. Nanotechnology 21(3):035101. doi: 10.1088/0957-4484/21/3/035101 Google Scholar
  195. 195.
    Brady CI, Mack NH, Brown LO, Doorn SK (2009) Self-assembly approach to multiplexed surface-enhanced Raman spectral-encoder beads. Anal Chem 81(17):7181–7188. doi: 10.1021/ac900619h Google Scholar
  196. 196.
    Schutz M, Steinigeweg D, Salehi M, Kompe K, Schlucker S (2011) Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun 47(14):4216–4218. doi: 10.1039/c0cc05229a Google Scholar
  197. 197.
    Guarrotxena N, Liu B, Fabris L, Bazan GC (2010) Antitags: nanostructured tools for developing SERS-based ELISA analogs. Adv Mater 22(44):4954–4958. doi: 10.1002/adma.201002369 Google Scholar
  198. 198.
    Sha MY, Xu HX, Natan MJ, Cromer R (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130(51):17214–17215. doi: 10.1021/ja804494m Google Scholar
  199. 199.
    Gellner M, Kompe K, Schlucker S (2009) Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules. Anal Bioanal Chem 394(7):1839–1844. doi: 10.1007/s00216-009-2868-8 Google Scholar
  200. 200.
    Lee S, Joo S, Park S, Kim S, Kim HC, Chung TD (2010) SERS decoding of micro gold shells moving in microfluidic systems. Electrophoresis 31(10):1623–1629. doi: 10.1002/elps.200900743 Google Scholar
  201. 201.
    Li JM, Ma WF, Wei CA, Guo J, Hu J, Wang CC (2011) Poly(styrene-co-acrylic acid) core and silver nanoparticle/silica shell composite microspheres as high performance surface-enhanced Raman spectroscopy (SERS) substrate and molecular barcode label. J Mater Chem 21(16):5992–5998. doi: 10.1039/c0jm04343e Google Scholar
  202. 202.
    Kim K, Lee HS, Yu HD, Park HK, Kim NH (2008) A facile route to stabilize SERS-marker molecules on mu Ag particles: layer-by-layer deposition of polyelectrolytes. Colloids Surf A Physicochem Eng Asp 316(1–3):1–7. doi: 10.1016/j.colsurfa.2007.08.011 Google Scholar
  203. 203.
    Sirimuthu NMS, Syme CD, Cooper JM (2011) Investigation of the stability of labelled nanoparticles for SE(R)RS measurements in cells. Chem Commun 47(14):4099–4101. doi: 10.1039/c0cc05723a Google Scholar
  204. 204.
    Geissler M, Li KB, Cui B, Clime L, Veres T (2009) Plastic substrates for surface-enhanced Raman scattering. J Phys Chem C 113(40):17296–17300. doi: 10.1021/jp9038607 Google Scholar
  205. 205.
    Lin W (2011) A durable plastic substrate for surface-enhanced Raman spectroscopy. App Phys A Mater Sci Process 102(1):121–125. doi: 10.1007/s00339-010-6007-3 Google Scholar
  206. 206.
    John JF, Mahurin S, Dai S, Sepaniak MJ (2010) Use of atomic layer deposition to improve the stability of silver substrates for in situ, high temperature SERS measurements. J Raman Spectrosc 41(1):4–11. doi: 10.1002/jrs.2395 Google Scholar
  207. 207.
    Contreras-Caceres R, Abade-Cela S, Guardia-Giros P, Fernandez-Barbero A, Perez-Juste J, Alvarez-Puebla RA, Liz-Marzan LM (2011) Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 27(8):4520–4525. doi: 10.1021/la200266e Google Scholar
  208. 208.
    Pettinger B (2010) Single-molecule surface- and tip-enhanced Raman spectroscopy. Mol Phys 108(16):2039–2059. doi: 10.1080/00268976.2010.506891 Google Scholar
  209. 209.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670Google Scholar
  210. 210.
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106Google Scholar
  211. 211.
    Xu H, Aizpurua J, Kaell M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E Stat Nonlinear Soft Matter Phys 62(3):4318–4324Google Scholar
  212. 212.
    Gu GH, Suh JS (2009) Minimum enhancement of surface-enhanced Raman scattering for single-molecule detections. J Phys Chem A 113(30):8529–8532. doi: 10.1021/jp902714t Google Scholar
  213. 213.
    Etchegoin PG, Le Ru EC, Meyer M (2008) SERS assertions addressed. Phys Today 61(8):13–14Google Scholar
  214. 214.
    Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803Google Scholar
  215. 215.
    Fang Y, Seong NH, Dlott DD (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887):388–392. doi: 10.1126/science.1159499 Google Scholar
  216. 216.
    Chen T, Du CL, Tan LH, Shen ZX, Chen HY (2011) Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering. Nanoscale 3(4):1575–1581. doi: 10.1039/c0nr00845a Google Scholar
  217. 217.
    Ausman LK, Schatz GC (2009) On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres. J Chem Phys 131(8):084708. doi: 10.1063/1.3211969 Google Scholar
  218. 218.
    Maher RC, Galloway CM, Le Ru EC, Cohena LF, Etchegoin PG (2008) Vibrational pumping in surface enhanced Raman scattering (SERS). Chem Soc Rev 37(5):965–979. doi: 10.1039/b707870f Google Scholar
  219. 219.
    Maher RC, Zhang T, Cohen LF, Gallop JC, Liu FM, Green M (2009) Towards a metrological determination of the performance of SERS media. Phys Chem Chem Phys 11(34):7463–7468. doi: 10.1039/b904621f Google Scholar
  220. 220.
    Kozich V, Werncke W (2010) The vibrational pumping mechanism in surface-enhanced Raman scattering: a subpicosecond time-resolved study. J Phys Chem C 114(23):10484–10488. doi: 10.1021/jp101219e Google Scholar
  221. 221.
    Meyer SA, Le Ru EC, Etchegoin PG (2010) Quantifying resonant Raman cross sections with SERS. J Phys Chem A 114(17):5515–5519. doi: 10.1021/jp100669q Google Scholar
  222. 222.
    Franzen S (2009) Intrinsic limitations on the |E|4 dependence of the enhancement factor for surface-enhanced Raman scattering. J Phys Chem C 113(15):5912–5919. doi: 10.1021/jp808107h Google Scholar
  223. 223.
    Etchegoin PG, Le Ru EC (2008) A perspective on single molecule SERS: current status and future challenges. Phys Chem Chem Phys 10(40):6079–6089Google Scholar
  224. 224.
    Kneipp J, Kneipp H, Kneipp K (2008) SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37(5):1052–1060. doi: 10.1039/b708459p Google Scholar
  225. 225.
    Kleinman SL, Ringe E, Valley N, Wustholz KL, Phillips E, Scheidt KA, Schatz GC, Van Duyne RP (2011) Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment. J Am Chem Soc 133(11):4115–4122. doi: 10.1021/ja110964d Google Scholar
  226. 226.
    Blackie E, Le Ru EC, Meyer M, Timmer M, Burkett B, Northcote P, Etchegoin PG (2008) Bi-analyte SERS with isotopically edited dyes. Phys Chem Chem Phys 10(28):4147–4153Google Scholar
  227. 227.
    Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP (2007) A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J Am Chem Soc 129(51):16249–16256. doi: 10.1021/ja077243c Google Scholar
  228. 228.
    Blackie EJ, Le Ru EC, Etchegoin PG (2009) Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J Am Chem Soc 131(40):14466–14472. doi: 10.1021/ja905319w Google Scholar
  229. 229.
    Bohn JE, Le Ru EC, Etchegoin PG (2010) A statistical criterion for evaluating the single-molecule character of SERS signals. J Phys Chem C 114(16):7330–7335. doi: 10.1021/jp908990v Google Scholar
  230. 230.
    Wang ZB, Luk'yanchuk BS, Guo W, Edwardson SP, Whitehead DJ, Li L, Liu Z, Watkins KG (2008) The influences of particle number on hot spots in strongly coupled metal nanoparticles chain. J Chem Phys 128(9):094705/094701–094705/094705Google Scholar
  231. 231.
    Camden JP, Dieringer JA, Wang YM, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130(38):12616–12617. doi: 10.1021/ja8051427 Google Scholar
  232. 232.
    Dieringer JA, Wustholz KL, Masiello DJ, Camden JP, Kleinman SL, Schatz GC, Van Duyne RP (2009) Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. J Am Chem Soc 131(2):849–854. doi: 10.1021/ja8080154 Google Scholar
  233. 233.
    Buchanan S, Le Ru EC, Etchegoin PG (2009) Plasmon-dispersion corrections and constraints for surface selection rules of single molecule SERS spectra. Phys Chem Chem Phys 11(34):7406–7411Google Scholar
  234. 234.
    Galloway CM, Etchegoin PG, Le Ru EC (2009) Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced Raman and fluorescence signals of single molecules. Phys Rev Lett 103(6). doi: 10.1103/PhysRevLett.103.063003
  235. 235.
    Galloway CM, Le Ru EC, Etchegoin PG (2009) Single-molecule vibrational pumping in SERS. Phys Chem Chem Phys 11(34):7372–7380. doi: 10.1039/b904638k Google Scholar
  236. 236.
    Masiello DJ, Schatz GC (2008) Many-body theory of surface-enhanced Raman scattering. Phys Rev A 78(4):042505. doi: 10.1103/PhysRevA.78.042505 Google Scholar
  237. 237.
    Li MY, Liao Q, Zhang M, Ai XC, Li FY (2008) Surface-enhanced Raman scattering and DFT computational studies of a benzotriazole derivative. J Mol Struct 888(1–3):2–6. doi: 10.1016/j.molstruc.2007.11.019 Google Scholar
  238. 238.
    Canamares MV, Chenal C, Birke RL, Lombardi JR (2008) DFT, SERS, and single-molecule SERS of crystal violet. J Phys Chem C 112(51):20295–20300. doi: 10.1021/jp807807j Google Scholar
  239. 239.
    Cozar IB, Szabo L, Mare D, Leopold N, David L, Chis V (2011) IR, Raman, SERS and DFT study of paroxetine. J Mol Struct 993(1–3):243–248. doi: 10.1016/j.molstruc.2010.12.020 Google Scholar
  240. 240.
    Bebu A, Szabo L, Leopold N, Berindean C, David L (2011) IR, Raman, SERS and DFT study of amoxicillin. J Mol Struct 993(1–3):52–56. doi: 10.1016/j.molstruc.2010.11.067 Google Scholar
  241. 241.
    Podstawka-Proniewicz E, Andrzejak M, Kafarski P, Kim Y, Proniewicz LM (2011) Vibrational characterization of l-valine phosphonate dipeptides: FT-IR, FT-RS, and SERS spectroscopy studies and DFT calculations. J Raman Spectrosc 42(5):958–979. doi: 10.1002/jrs.2821 Google Scholar
  242. 242.
    Lim JK, Kwon O, Joo SW (2008) Interfacial structure of 1,3-benzenedithiol and 1,3-benzenedimethanethiol on silver surfaces: surface-enhanced Raman scattering study and theoretical calculations. J Phys Chem C 112(17):6816–6821. doi: 10.1021/jp077409w Google Scholar
  243. 243.
    Mdluli PS, Sosibo NM, Revaprasadu N, Karamanis P, Leszczynski J (2009) Surface enhanced Raman spectroscopy (SERS) and density functional theory (DFT) study for understanding the regioselective adsorption of pyrrolidinone on the surface of silver and gold colloids. J Mol Struct 935(1–3):32–38. doi: 10.1016/j.molstruc.2009.06.039 Google Scholar
  244. 244.
    Mishra S, Singh RK, Ojha AK (2009) Investigation on bonding interaction of benzonitrile with silver nano particles probed by surface enhanced Raman scattering and quantum chemical calculations. Chem Phys 355(1):14–20. doi: 10.1016/j.chemphys.2008.10.006 Google Scholar
  245. 245.
    Andrade GFS, Temperini MLA (2009) Identification of species formed after pyridine adsorption on iron, cobalt, nickel and silver electrodes by SERS and theoretical calculations. J Raman Spectrosc 40(12):1989–1995. doi: 10.1002/jrs.2354 Google Scholar
  246. 246.
    Tarakeshwar P, Finkelstein-Shapiro D, Rajh T, Mujica V (2011) Quantum confinement effects on the surface enhanced Raman spectra of hybrid systems molecule-TiO2 nanoparticles. Int J Quantum Chem 111(7–8):1659–1670. doi: 10.1002/qua.22889 Google Scholar
  247. 247.
    Wu DY, Liu XM, Huang YF, Ren B, Xu X, Tian ZQ (2009) Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement: a DFT study. J Phys Chem C 113(42):18212–18222. doi: 10.1021/jp9050929 Google Scholar
  248. 248.
    Wu DY, Zhao LB, Liu XM, Huang R, Huang YF, Ren B, Tian ZQ (2011) Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS. Chem Commun 47(9):2520–2522. doi: 10.1039/c0cc05302c Google Scholar
  249. 249.
    Valley N, Jensen L, Autschbach J, Schatz GC (2010) Theoretical studies of surface enhanced hyper-Raman spectroscopy: the chemical enhancement mechanism. J Chem Phys 133(5):054103. doi: 10.1063/1.3456544 Google Scholar
  250. 250.
    Morton SM, Ewusi-Annan E, Jensen L (2009) Controlling the non-resonant chemical mechanism of SERS using a molecular photoswitch. Phys Chem Chem Phys 11(34):7424–7429. doi: 10.1039/b904745j Google Scholar
  251. 251.
    Wu DY, Liu XM, Duan S, Xu X, Ren B, Lin SH, Tian ZQ (2008) Chemical enhancement effects in SERS spectra: a quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals. J Phys Chem C 112(11):4195–4204. doi: 10.1021/jp0760962 Google Scholar
  252. 252.
    Liu SS, Zhao XH, Li YZ, Chen MD, Sun MT (2009) DFT study of adsorption site effect on surface-enhanced Raman scattering of neutral and charged pyridine–Ag4 complexes. Spectrochim Acta A Mol Biomol Spectrosc 73(2):382–387. doi: 10.1016/j.saa.2009.02.036 Google Scholar
  253. 253.
    Birke RL, Znamenskiy V, Lombardi JR (2010) A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag(10)-pyridine complex. J Chem Phys 132(21):214707. doi: 10.1063/1.3431210 Google Scholar
  254. 254.
    Cecchini MP, Stapountzi MA, McComb DW, Albrecht T, Edel JB (2011) Flow-based autocorrelation studies for the detection and investigation of single-particle surface-enhanced resonance Raman spectroscopic events. Anal Chem 83(4):1418–1424. doi: 10.1021/ac102925h Google Scholar
  255. 255.
    King MD, Khadka S, Craig GA, Mason MD (2008) Effect of local heating on the SERS efficiency of optically trapped prismatic nanoparticles. J Phys Chem C 112(31):11751–11757. doi: 10.1021/jp8O3219x Google Scholar
  256. 256.
    Baffou G, Quidant R, Girard C (2009) Heat generation in plasmonic nanostructures: influence of morphology. Appl Phys Lett 94(15):53109/153101–153103Google Scholar
  257. 257.
    Yeo BS, Schmid T, Zhang WH, Zenobi R (2008) A strategy to prevent signal losses, analyte decomposition, and fluctuating carbon contamination bands in surface-enhanced Raman spectroscopy. Appl Spectrosc 62(6):708–713Google Scholar
  258. 258.
    Etchegoin PG, Lacharmoise PD, Le Ru EC (2009) Influence of photostability on single-molecule surface enhanced Raman scattering enhancement factors. Anal Chem 81(2):682–688. doi: 10.1021/ac802083z Google Scholar
  259. 259.
    Wei H, Hao F, Huang YZ, Wang WZ, Nordlander P, Xu HX (2008) Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett 8(8):2497–2502. doi: 10.1021/nl8015297 Google Scholar
  260. 260.
    Nagasawa F, Takase M, Nabika H, Murakoshi K (2011) Polarization characteristics of surface-enhanced Raman scattering from a small number of molecules at the gap of a metal nano-dimer. Chem Commun 47(15):4514–4516. doi: 10.1039/c0cc05866a Google Scholar
  261. 261.
    Kitahama Y, Tanaka Y, Itoh T, Ozaki Y (2010) Power-law statistics in blinking SERS of thiacyanine adsorbed on a single silver nanoaggregate. Phys Chem Chem Phys 12(27):7457–7460. doi: 10.1039/c000824a Google Scholar
  262. 262.
    Cortes E, Etchegoin PG, Le Ru EC, Fainstein A, Vela ME, Salvarezza RC (2010) Electrochemical modulation for signal discrimination in surface enhanced Raman scattering (SERS). Anal Chem 82(16):6919–6925. doi: 10.1021/ac101152t Google Scholar
  263. 263.
    Farcau C, Astilean S (2011) Evidence of a surface plasmon-mediated mechanism in the generation of the SERS background. Chem Commun 47(13):3861–3863. doi: 10.1039/c0cc05190j Google Scholar
  264. 264.
    Mahajan S, Cole RM, Speed JD, Pelfrey SH, Russell AE, Bartlett PN, Barnett SM, Baumberg JJ (2010) Understanding the surface-enhanced Raman spectroscopy “background”. J Phys Chem C 114(16):7242–7250. doi: 10.1021/jp907197b Google Scholar
  265. 265.
    Smith WE (2008) Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev 37(5):955–964. doi: 10.1039/b708841h Google Scholar
  266. 266.
    Graham D, Faulds K (2008) Quantitative SERRS for DNA sequence analysis. Chem Soc Rev 37(5):1042–1051Google Scholar
  267. 267.
    Kim H, Kosuda KM, Van Duyne RP, Stair PC (2010) Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem Soc Rev 39(12):4820–4844. doi: 10.1039/c0cs00044b Google Scholar
  268. 268.
    März A, Ackermann K, Malsch D, Bocklitz T, Henkel T, Popp J (2009) Towards a quantitative SERS approach—online monitoring of analytes in a microfluidic system with isotope-edited internal standards. J Biophotonics 2(4):232–242Google Scholar
  269. 269.
    Wang G, Lim C, Chen L, Chon H, Choo J, Hong J, deMello AJ (2009) Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Anal Bioanal Chem 394(7):1827–1832. doi: 10.1007/s00216-009-2832-7 Google Scholar
  270. 270.
    Chen LX, Choo JB (2008) Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29(9):1815–1828. doi: 10.1002/elps.200700554 Google Scholar
  271. 271.
    Quang LX, Lim C, Seong GH, Choo J, Do KJ, Yoo SK (2008) A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Lab Chip 8(12):2214–2219. doi: 10.1039/b808835g Google Scholar
  272. 272.
    Wang M, Benford M, Jing N, Cote G, Kameoka J (2009) Optofluidic device for ultra-sensitive detection of proteins using surface-enhanced Raman spectroscopy. Microfluid Nanofluid 6(3):411–417. doi: 10.1007/s10404-008-0397-y Google Scholar
  273. 273.
    Zhang X, Yin H, Cooper JM, Haswell SJ (2008) Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques. Anal Bioanal Chem 390(3):833–840. doi: 10.1007/s00216-007-1564-9 Google Scholar
  274. 274.
    Strelau KK, Kretschmer R, Moller R, Fritzsche W, Popp J (2010) SERS as tool for the analysis of DNA-chips in a microfluidic platform. Anal Bioanal Chem 396(4):1381–1384. doi: 10.1007/s00216-009-3374-8 Google Scholar
  275. 275.
    Wilson R, Bowden SA, Parnell J, Cooper JM (2010) Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics. Anal Chem 82(5):2119–2123. doi: 10.1021/ac100060g Google Scholar
  276. 276.
    Gao R, Choi N, Chang S-I, Kang SH, Song JM, Cho SI, Lim DW, Choo J (2010) Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Anal Chim Acta 681(1–2):87–91. doi: 10.1016/j.aca.2010.09.036 Google Scholar
  277. 277.
    Cecchini MP, Hong J, Lim C, Choo J, Albrecht T, Demello AJ, Edel JB (2011) Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems. Anal Chem 83(8):3076–3081. doi: 10.1021/ac103329b Google Scholar
  278. 278.
    März A, Henkel T, Cialla D, Schmitt M, Popp J (2011) Droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy—concepts and applications. Lab Chip. doi: 10.1039/C1LC20638A
  279. 279.
    Strehle KR, Cialla D, Roesch P, Henkel T, Koehler M, Popp J (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547Google Scholar
  280. 280.
    März A, Trupp S, Rösch P, Mohr GJ, Popp J (2011) Fluorescence dye as novel label molecule for quantitative SERS investigations of an antibiotic. Anal Bioanal Chem. doi: 10.1007/s00216-00011-05273-z
  281. 281.
    Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem 8(18):2665–2670Google Scholar
  282. 282.
    Maerz A, Moench B, Roesch P, Kiehntopf M, Henkel T, Popp J (2011) Detection of thiopurine methyltransferase activity in lysed red blood cells by means of lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS). Anal Bioanal Chem 400(9):2755–2761. doi: 10.1007/s00216-011-4811-z Google Scholar
  283. 283.
    Huh YS, Erickson D (2010) Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays. Biosens Bioelectron 25(5):1240–1243. doi: 10.1016/j.bios.2009.09.040 Google Scholar
  284. 284.
    Walter A, Marz A, Schumacher W, Rosch P, Popp J (2011) Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip 11(6):1013–1021. doi: 10.1039/c0lc00536c Google Scholar
  285. 285.
    Zhang JY, Do J, Premasiri WR, Ziegler LD, Klapperich CM (2010) Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect. Lab Chip 10(23):3265–3270. doi: 10.1039/c0lc00051e Google Scholar
  286. 286.
    Chon H, Lim C, Ha S-M, Ahn Y, Lee EK, Chang S-I, Seong GH, Choo J (2010) On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 82(12):5290–5295. doi: 10.1021/ac100736t Google Scholar
  287. 287.
    Wang W, Yang C, Cui XQ, Bao QL, Li CM (2010) Droplet microfluidic preparation of Au nanoparticles-coated chitosan microbeads for flow-through surface-enhanced Raman scattering detection. Microfluid Nanofluid 9(6):1175–1183. doi: 10.1007/s10404-010-0639-7 Google Scholar
  288. 288.
    Deckert V (2009) Tip-enhanced Raman spectroscopy. J Raman Spectrosc 40(10):1336–1337. doi: 10.1002/jrs.2452 Google Scholar
  289. 289.
    Bailo E, Deckert V (2008) Tip-enhanced Raman scattering. Chem Soc Rev 37(5):921–930Google Scholar
  290. 290.
    Picardi G, Chaigneau M, Ossikovski R (2009) High resolution probing of multi wall carbon nanotubes by tip enhanced Raman spectroscopy in gap-mode. Chem Phys Lett 469(1–3):161–165. doi: 10.1016/j.cplett.2008.12.088 Google Scholar
  291. 291.
    Stadler J, Schmid T, Zenobi R (2010) Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. Nano Lett 10(11):4514–4520. doi: 10.1021/nl102423m Google Scholar
  292. 292.
    Sackrow M, Stanciu C, Lieb MA, Meixner AJ (2008) Imaging nanometre-sized hot spots on smooth Au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. ChemPhysChem 9(2):316–320. doi: 10.1002/cphc.200700723 Google Scholar
  293. 293.
    Downes A, Mouras R, Mari M, Elfick A (2009) Optimising tip-enhanced optical microscopy. J Raman Spectrosc 40(10):1355–1360. doi: 10.1002/jrs.2382 Google Scholar
  294. 294.
    You Y, Purnawirman NA, Hu H, Kasim J, Yang H, Du C, Yu T, Shen Z (2010) Tip-enhanced Raman spectroscopy using single-crystalline Ag nanowire as tip. J Raman Spectrosc 41(10):1156–1162. doi: 10.1002/jrs.2559 Google Scholar
  295. 295.
    Kharintsev SS, Noskov AI, Hoffmann GG, Loos J (2011) Near-field optical taper antennas fabricated with a highly replicable ac electrochemical etching method. Nanotechnology 22(2):025202. doi: 10.1088/0957-4484/22/2/025202 Google Scholar
  296. 296.
    Barrios CA, Malkovskiy AV, Kisliuk AM, Sokolov AP, Foster MD (2009) Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy. J Phys Chem C 113(19):8158–8161. doi: 10.1021/jp8098126 Google Scholar
  297. 297.
    Bek A, De Angelis F, Das G, Di Fabrizio E, Lazzarino M (2011) Tip enhanced Raman scattering with adiabatic plasmon focusing tips. Micron 42(4):313–317. doi: 10.1016/j.micron.2010.05.017 Google Scholar
  298. 298.
    Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J Phys Chem Lett 1(24):3427–3432. doi: 10.1021/jz101289z Google Scholar
  299. 299.
    Peica N, Thomsen C, Maultzsch J (2010) Tip-enhanced Raman scattering along a single wall carbon nanotubes bundle. Phys Status Solidi B Basic Solid State Phys 247(11–12):2818–2822. doi: 10.1002/pssb.201000208 Google Scholar
  300. 300.
    Cancado LG, Hartschuh A, Novotny L (2009) Tip-enhanced Raman spectroscopy of carbon nanotubes. J Raman Spectrosc 40(10):1420–1426. doi: 10.1002/jrs.2448 Google Scholar
  301. 301.
    Tarun A, Hayazawa N, Kawata S (2009) Tip-enhanced Raman spectroscopy for nanoscale strain characterization. Anal Bioanal Chem 394(7):1775–1785. doi: 10.1007/s00216-009-2771-3 Google Scholar
  302. 302.
    Marquestaut N, Talaga D, Servant L, Yang P, Pauzauskie P, Lagugne-Labarthet F (2009) Imaging of single GaN nanowires by tip-enhanced Raman spectroscopy. J Raman Spectrosc 40(10):1441–1445. doi: 10.1002/jrs.2404 Google Scholar
  303. 303.
    Boehme R, Cialla D, Richter M, Roesch P, Popp J, Deckert V (2010) Biochemical imaging below the diffraction limit – probing cellular membrane related structures by tip-enhanced Raman spectroscopy (TERS). J Biophotonics 3(7):455–461. doi: 10.1002/jbio.201000030 Google Scholar
  304. 304.
    Opilik L, Bauer T, Schmid T, Stadler J, Zenobi R (2011) Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy. Phys Chem Chem Phys 13(21):9978–9981. doi: 10.1039/c0cp02832k Google Scholar
  305. 305.
    Cialla D, Deckert-Gaudig T, Budich C, Laue M, Moeller R, Naumann D, Deckert V, Popp J (2009) Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J Raman Spectrosc 40(3):240–243. doi: 10.1002/jrs.2123 Google Scholar
  306. 306.
    Hermann P, Hermelink A, Lausch V, Holland G, Moeller L, Bannert N, Naumann D (2011) Evaluation of tip-enhanced Raman spectroscopy for characterizing different virus strains. Analyst 136(6):1148–1152. doi: 10.1039/c0an00531b Google Scholar
  307. 307.
    Bailo E, Deckert V (2008) Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew Chem Int Ed 47(9):1658–1661Google Scholar
  308. 308.
    Zhang D, Domke KF, Pettinger B (2010) Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au (111). ChemPhysChem 11(8):1662–1665. doi: 10.1002/cphc.200900883 Google Scholar
  309. 309.
    Böhme R, Richter M, Cialla D, Rösch P, Deckert V, Popp J (2009) Towards a specific characterisation of components on a cell surface – combined TERS-investigations of lipids and human cells. J Raman Spectrosc 40(10):1452–1457Google Scholar
  310. 310.
    Schmid T, Messmer A, Yeo BS, Zhang WH, Zenobi R (2008) Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Anal Bioanal Chem 391(5):1907–1916. doi: 10.1007/s00216-008-2101-1 Google Scholar
  311. 311.
    Yeo BS, Madler S, Schmid T, Zhang WH, Zenobi R (2008) Tip-enhanced Raman spectroscopy can see more: the case of cytochrome C. J Phys Chem C 112(13):4867–4873. doi: 10.1021/jp709799m Google Scholar
  312. 312.
    Schmid T, Yeo BS, Leong G, Stadler J, Zenobi R (2009) Performing tip-enhanced Raman spectroscopy in liquids. J Raman Spectrosc 40(10):1392–1399. doi: 10.1002/jrs.2387 Google Scholar
  313. 313.
    Sepulveda B, Angelome PC, Lechuga LM, Liz-Marzan LM (2009) LSPR-based nanobiosensors. Nano Today 4:244–251. doi: 10.1016/j.nantod.2009.04.001 Google Scholar
  314. 314.
    Kim D (2010) Nanostructure-based localized surface plasmon resonance biosensors. Springer Ser Chem Sens Biosens 7:181–207. doi: 10.1007/978-3-540-88242-8_7 Google Scholar
  315. 315.
    Potara M, Gabudean AM, Astilean S (2011) Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles. J Mater Chem 21(11):3625–3633. doi: 10.1039/c0jm03329d Google Scholar
  316. 316.
    Meyer SA, Le Ru EC, Etchegoin PG (2011) Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal Chem 83(6):2337–2344. doi: 10.1021/ac103273r Google Scholar
  317. 317.
    Sabatte G, Keir R, Lawlor M, Black M, Graham D, Smith WE (2008) Comparison of surface-enhanced resonance Raman scattering and fluorescence for detection of a labeled antibody. Anal Chem 80(7):2351–2356. doi: 10.1021/ac071343j Google Scholar
  318. 318.
    Lakowicz JR, Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Aslan K, Lukomska J, Matveeva E, Zhang J, Badugu R, Huang J (2004) Advances in surface-enhanced fluorescence. J Fluoresc 14(4):425–441Google Scholar
  319. 319.
    Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002. doi: 10.1103/PhysRevLett.96.113002 Google Scholar
  320. 320.
    Kim K, Lee YM, Lee JW, Shin KS (2009) Metal-enhanced fluorescence of rhodamine B isothiocyanate from micrometer-sized silver powders. Langmuir 25(5):2641–2645. doi: 10.1021/la803205n Google Scholar
  321. 321.
    Cialla D, Weber K, Böhme R, Hübner U, Schneidewind H, Zeisberger M, Mattheis R, Möller R, Popp J (2011) Towards multiple readout application of plasmonic arrays. Beilstein J Nanotechnol 2:501–508Google Scholar
  322. 322.
    Stokes RJ, Dougan JA, Graham D (2008) Dip-pen nanolithography and SERRS as synergic techniques. Chem Commun 44:5734–5736. doi: 10.1039/b813249f Google Scholar
  323. 323.
    Rao S, Raj S, Balint S, Fons CB, Campoy S, Llagostera M, Petrov D (2010) Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl Phys Lett 96:213701. doi: 10.1063/1.3431628 Google Scholar
  324. 324.
    Abalde-Cela S, Auguie B, Fischlechner M, Huck WTS, Alvarez-Puebla RA, Liz-Marzan LM, Abell C (2011) Microdroplet fabrication of silver-agarose nanocomposite beads for SERS optical accumulation. Soft Matter 7(4):1321–1325. doi: 10.1039/c0sm00601g Google Scholar
  325. 325.
    Lacharmoise PD, Le Ru EC, Etchegoin PG (2009) Guiding molecules with electrostatic forces in surface enhanced Raman spectroscopy. ACS Nano 3(1):66–72. doi: 10.1021/nn800710m Google Scholar
  326. 326.
    Ranc V, Stanova A, Marak J, Maier V, Sevcik J, Kaniansky D (2011) Preparative isotachophoresis with surface enhanced Raman scattering as a promising tool for clinical samples analysis. J Chromatogr A 1218(2):205–210. doi: 10.1016/j.chroma.2010.11.025 Google Scholar
  327. 327.
    Itoh T, Yoshikawa H, Yoshida K, Biju V, Ishikawa M (2009) Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates. J Chem Phys 130(21):214706. doi: 10.1063/1.3146788 Google Scholar
  328. 328.
    Polubotko AM (2010) Strong quadrupole interaction of light with molecules and its manifestation in surface-enhanced hyper-Raman scattering spectra. Opt Spectrosc 109(4):510–520. doi: 10.1134/s0030400x10100061 Google Scholar
  329. 329.
    Milojevich CB, Silverstein DW, Jensen L, Camden JP (2011) Probing one-photon inaccessible electronic states with high sensitivity: wavelength scanned surface enhanced hyper-Raman scattering. ChemPhysChem 12(1):101–103. doi: 10.1002/cphc.201000868 Google Scholar
  330. 330.
    Vo-Dinh T, Wang H-N, Scaffidi J (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102Google Scholar
  331. 331.
    Chourpa I, Lei FH, Dubois P, Manfait M, Sockalingum GD (2008) Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem Soc Rev 37(5):993–1000Google Scholar
  332. 332.
    Golightly RS, Doering WE, Natan MJ (2009) Surface-enhanced Raman spectroscopy and homeland security: a perfect match? ACS Nano 3(10):2859–2869. doi: 10.1021/nn9013593 Google Scholar
  333. 333.
    Bell SEJ, Sirimuthu NMS (2008) Quantitative surface-enhanced Raman spectroscopy. Chem Soc Rev 37(5):1012–1024. doi: 10.1039/b705965p Google Scholar
  334. 334.
    Harpster MH, Zhang H, Sankara-Warrier AK, Ray BH, Ward TR, Kollmar JP, Carron KT, Mecham JO, Corcoran RC, Wilson WC, Johnson PA (2009) SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label. Biosens Bioelectron 25(4):674–681. doi: 10.1016/j.bios.2009.05.020 Google Scholar
  335. 335.
    MacAskill A, Crawford D, Graham D, Faulds K (2009) DNA sequence detection using surface-enhanced resonance Raman spectroscopy in a homogeneous multiplexed assay. Anal Chem 81(19):8134–8140. doi: 10.1021/ac901361b Google Scholar
  336. 336.
    Lo HC, Hsiung HI, Chattopadhyay S, Han HC, Chen CF, Leu JP, Chen KH, Chen LC (2011) Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform. Biosens Bioelectron 26(5):2413–2418. doi: 10.1016/j.bios.2010.10.022 Google Scholar
  337. 337.
    Barhoumi A, Halas NJ (2010) Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy. J Am Chem Soc 132(37):12792–12793. doi: 10.1021/ja105678z Google Scholar
  338. 338.
    Wang J, Yang XR (2009) Multiplex binding modes of toluidine blue with calf thymus DNA and conformational transition of DNA revealed by spectroscopic studies. Spectrochim Acta A Mol Biomol Spectrosc 74(2):421–426. doi: 10.1016/j.saa.2009.06.038 Google Scholar
  339. 339.
    Neumann O, Zhang DM, Tam F, Lal S, Wittung-Stafshede P, Halas NJ (2009) Direct optical detection of aptamer conformational changes induced by target molecules. Anal Chem 81(24):10002–10006. doi: 10.1021/ac901849k Google Scholar
  340. 340.
    Patel IS, Premasiri WR, Moir DT, Ziegler LD (2008) Barcoding bacterial cells: a SERS-based methodology for pathogen identification. J Raman Spectrosc 39(11):1660–1672. doi: 10.1002/jrs.2064 Google Scholar
  341. 341.
    Wang HN, Vo-Dinh T (2009) Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 20(6):065101. doi: 10.1088/0957-4484/20/6/065101 Google Scholar
  342. 342.
    Lowe AJ, Huh YS, Strickland AD, Erickson D, Batt CA (2010) Multiplex single nucleotide polymorphism genotyping utilizing ligase detection reaction coupled surface enhanced Raman spectroscopy. Anal Chem 82(13):5810–5814. doi: 10.1021/ac100921b Google Scholar
  343. 343.
    Huh YS, Chung AJ, Cordovez B, Erickson D (2009) Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab Chip 9(3):433–439. doi: 10.1039/b809702j Google Scholar
  344. 344.
    Fabris L, Dante M, Nguyen TQ, Tok JBH, Bazan GC (2008) SERS aptatags: new responsive metallic nanostructures for heterogeneous protein detection by surface enhanced Raman spectroscopy. Adv Funct Mater 18(17):2518–2525. doi: 10.1002/adfm.200800301 Google Scholar
  345. 345.
    Wang GF, Lipert RJ, Jain M, Kaur S, Chakraboty S, Torres MP, Batra SK, Brand RE, Porter MD (2011) Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. Anal Chem 83(7):2554–2561. doi: 10.1021/ac102829b Google Scholar
  346. 346.
    El-Said WA, Kim TH, Kim H, Choi JW (2010) Detection of effect of chemotherapeutic agents to cancer cells on gold nanoflower patterned substrate using surface-enhanced Raman scattering and cyclic voltammetry. Biosens Bioelectron 26(4):1486–1492. doi: 10.1016/j.bios.2010.07.089 Google Scholar
  347. 347.
    Jehn C, Kustner B, Adam P, Marx A, Strobel P, Schmuck C, Schlucker S (2009) Water soluble SERS labels comprising a SAM with dual spacers for controlled bioconjugation. Phys Chem Chem Phys 11(34):7499–7504. doi: 10.1039/b905092b Google Scholar
  348. 348.
    Stone N, Kerssens M, Lloyd GR, Faulds K, Graham D, Matousek P (2011) Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging – the next dimension. Chem Sci 2(4):776–780. doi: 10.1039/c0sc00570c Google Scholar
  349. 349.
    Cheung W, Shadi IT, Xu Y, Goodacre R (2010) Quantitative analysis of the banned food dye sudan-1 using surface enhanced Raman scattering with multivariate chemometrics. J Phys Chem C 114(16):7285–7290. doi: 10.1021/jp908892n Google Scholar
  350. 350.
    He LL, Rodda T, Haynes CL, Deschaines T, Strother T, Diez-Gonzalez F, Labuza TP (2011) Detection of a foreign protein in milk using surface-enhanced Raman spectroscopy coupled with antibody-modified silver dendrites. Anal Chem 83(5):1510–1513. doi: 10.1021/ac1032353 Google Scholar
  351. 351.
    Chen JW, Jiang JH, Gao X, Liu GK, Shen GL, Yu RQ (2008) A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy. Chem Eur J 14(27):8374–8382. doi: 10.1002/chem.200701307 Google Scholar
  352. 352.
    Holthoff EL, Stratis-Cullum DN, Hankus ME (2011) A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering. Sensors 11(3):2700–2714. doi: 10.3390/s110302700 Google Scholar
  353. 353.
    Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626Google Scholar
  354. 354.
    Vangala K, Yanney M, Hsiao CT, Wu WW, Shen RF, Zou SG, Sygula A, Zhang DM (2010) Sensitive carbohydrate detection using surface enhanced Raman tagging. Anal Chem 82(24):10164–10171. doi: 10.1021/ac102284x Google Scholar
  355. 355.
    Zhao L, Shingaya Y, Tomimoto H, Huang Q, Nakayama T (2008) Functionalized carbon nanotubes for pH sensors based on SERS. J Mater Chem 18(40):4759–4761. doi: 10.1039/b809833f Google Scholar
  356. 356.
    Ren B, Lian XB, Li JF, Fang PP, Lai QP, Tian ZQ (2008) Spectroelectrochemical flow cell with temperature control for investigation of electrocatalytic systems with surface-enhanced Raman spectroscopy. Faraday Discuss 140:155–165. doi: 10.1039/b803366h Google Scholar
  357. 357.
    D'Urzo L, Bozzini B (2009) A SERS study of the galvanostatic sequence used for the electrochemical deposition of copper from baths employed in the fabrication of interconnects. J Mater Sci Mater Electron 20(3):217–222. doi: 10.1007/s10854-008-9705-2 Google Scholar
  358. 358.
    Li D, Li DW, Fossey JS, Long YT (2010) Portable surface-enhanced Raman scattering sensor for rapid detection of aniline and phenol derivatives by on-site electrostatic preconcentration. Anal Chem 82(22):9299–9305. doi: 10.1021/ac101812x Google Scholar
  359. 359.
    Hatab NA, Rouleau CM, Retterer ST, Eres G, Hatzinger PB, Gu BH (2011) An integrated portable Raman sensor with nanofabricated gold bowtie array substrates for energetics detection. Analyst 136(8):1697–1702. doi: 10.1039/c0an00982b Google Scholar
  360. 360.
    Oo MKK, Han Y, Kanka J, Sukhishvili S, Du H (2010) Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy. Opt Lett 35(4):466–468Google Scholar
  361. 361.
    Du CL, Kasim J, You YM, Shi DN, Shen ZX (2011) Enhancement of Raman scattering by individual dielectric microspheres. J Raman Spectrosc 42(2):145–148. doi: 10.1002/jrs.2684 Google Scholar
  362. 362.
    Ausman LK, Schatz GC (2008) Whispering-gallery mode resonators: surface enhanced Raman scattering without plasmons. J Chem Phys 129(5):054704. doi: 10.1063/1.2961012 Google Scholar
  363. 363.
    Anderson MS (2010) Nonplasmonic surface enhanced Raman spectroscopy using silica microspheres. Appl Phys Lett 97(13):131116. doi: 10.1063/1.3493657 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dana Cialla
    • 1
    • 2
  • Anne März
    • 1
  • René Böhme
    • 1
  • Frank Theil
    • 1
  • Karina Weber
    • 1
    • 2
  • Michael Schmitt
    • 1
  • Jürgen Popp
    • 1
    • 2
    Email author
  1. 1.Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaJenaGermany
  2. 2.Institute of Photonic Technology e.V. JenaJenaGermany

Personalised recommendations