Analytical and Bioanalytical Chemistry

, Volume 402, Issue 6, pp 1993–2013

Comprehensive two-dimensional gas chromatography in metabolomics

  • Martin F. Almstetter
  • Peter J. Oefner
  • Katja Dettmer
Review

Abstract

One of the major objectives in metabolomics is the identification of subtle changes in metabolite profiles as affected by genetic or environmental factors. Comprehensive two-dimensional gas chromatography (GC × GC) hyphenated to a fast-acquisition mass spectrometer is a well-established analytical technique to study the composition of complex samples due to its enhanced separation capacity, sensitivity, peak resolution, and reproducibility. This review reports applications of GC × GC to metabolomics studies of sample of different types (biofluid, cells, tissue, bacteria, yeast, plants), and discusses its advantages and limitations.

Keywords

Metabolomics Metabolite profiling Metabolic fingerprinting Comprehensive two-dimensional gas chromatography 

References

  1. 1.
    Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15(1):45–50CrossRefGoogle Scholar
  2. 2.
    van der Greef J, Martin S, Juhasz P, Adourian A, Plasterer T, Verheij ER, McBurney RN (2007) The art and practice of systems biology in medicine: mapping patterns of relationships. J Proteome Res 6(4):1540–1559CrossRefGoogle Scholar
  3. 3.
    Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4(10):989–993CrossRefGoogle Scholar
  4. 4.
    Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130(5):606–625CrossRefGoogle Scholar
  5. 5.
    Kell DB (2009) Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2:2CrossRefGoogle Scholar
  6. 6.
    Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38(4):1119–1138CrossRefGoogle Scholar
  7. 7.
    Dettmer K, Hammock BD (2004) Metabolomics–a new exciting field within the "omics" sciences. Environ Health Perspect 112(7):A396–A397Google Scholar
  8. 8.
    Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253CrossRefGoogle Scholar
  9. 9.
    Fiehn O (2002) Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171CrossRefGoogle Scholar
  10. 10.
    Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189CrossRefGoogle Scholar
  11. 11.
    Nobeli I, Ponstingl H, Krissinel EB, Thornton JM (2003) A structure-based anatomy of the E.coli metabolome. J Mol Biol 334(4):697–719CrossRefGoogle Scholar
  12. 12.
    Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Bluthgen N, Borger S, Costenoble R, Heinemann M, Hucka M, Le Novere N, Li P, Liebermeister W, Mo ML, Oliveira AP, Petranovic D, Pettifer S, Simeonidis E, Smallbone K, Spasic I, Weichart D, Brent R, Broomhead DS, Westerhoff HV, Kirdar B, Penttila M, Klipp E, Palsson BO, Sauer U, Oliver SG, Mendes P, Nielsen J, Kell DB (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26(10):1155–1160CrossRefGoogle Scholar
  13. 13.
    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue):D603–D610Google Scholar
  14. 14.
    Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104(6):1777–1782CrossRefGoogle Scholar
  15. 15.
    Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14(7):1437–1440CrossRefGoogle Scholar
  16. 16.
    Oksman-Caldentey KM, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16(2):174–179CrossRefGoogle Scholar
  17. 17.
    Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56(410):273–286CrossRefGoogle Scholar
  18. 18.
    Nicholson JK, Holmes E, Lindon JC, Wilson ID (2004) The challenges of modeling mammalian biocomplexity. Nat Biotechnol 22(10):1268–1274CrossRefGoogle Scholar
  19. 19.
    Han X, Gross RW (2005) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteomics 2(2):253–264CrossRefGoogle Scholar
  20. 20.
    Goodacre R (2007) Metabolomics of a superorganism. J Nutr 137(1 Suppl):259S–266SGoogle Scholar
  21. 21.
    Gates SC, Sweeley CC (1978) Quantitative metabolic profiling based on gas chromatography. Clin Chem 24(10):1663–1673Google Scholar
  22. 22.
    Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB (2002) Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics 6(3):217–234CrossRefGoogle Scholar
  23. 23.
    Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8(9):1243–1266CrossRefGoogle Scholar
  24. 24.
    Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21(6):692–696CrossRefGoogle Scholar
  25. 25.
    Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB (2003) Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comp Funct Genomics 4(4):376–391CrossRefGoogle Scholar
  26. 26.
    Dieterle F, Riefke B, Schlotterbeck G, Ross A, Senn H, Amberg A (2011) NMR and MS methods for metabonomics. Methods Mol Biol 691:385–415CrossRefGoogle Scholar
  27. 27.
    Gronwald W, Klein MS, Kaspar H, Fagerer SR, Nurnberger N, Dettmer K, Bertsch T, Oefner PJ (2008) Urinary metabolite quantification employing 2D NMR spectroscopy. Anal Chem 80(23):9288–9297CrossRefGoogle Scholar
  28. 28.
    Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78CrossRefGoogle Scholar
  29. 29.
    Theodoridis G, Gika HG, Wilson ID (2011) Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom Rev 30(5):884–906Google Scholar
  30. 30.
    Ramautar R, Mayboroda OA, Somsen GW, de Jong GJ (2011) CE–MS for metabolomics: developments and applications in the period 2008–2010. Electrophoresis 32(1):52–65CrossRefGoogle Scholar
  31. 31.
    Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131(8):875–885CrossRefGoogle Scholar
  32. 32.
    Biais B, Allwood JW, Deborde C, Xu Y, Maucourt M, Beauvoit B, Dunn WB, Jacob D, Goodacre R, Rolin D, Moing A (2009) 1H NMR, GC–EI-TOFMS, and data set correlation for fruit metabolomics: application to spatial metabolite analysis in melon. Anal Chem 81(8):2884–2894CrossRefGoogle Scholar
  33. 33.
    t’Kindt R, Morreel K, Deforce D, Boerjan W, Van Bocxlaer J (2009) Joint GC–MS and LC–MS platforms for comprehensive plant metabolomics: repeatability and sample pre-treatment. J Chromatogr B Analyt Technol Biomed Life Sci 877(29):3572–3580Google Scholar
  34. 34.
    Klein MS, Almstetter MF, Schlamberger G, Nurnberger N, Dettmer K, Oefner PJ, Meyer HH, Wiedemann S, Gronwald W (2010) Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation. J Dairy Sci 93(4):1539–1550CrossRefGoogle Scholar
  35. 35.
    Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23(1):131–142CrossRefGoogle Scholar
  36. 36.
    Liu ZY, Philips JB (1991) Comprehensive 2-dimensional gas-chromatography using an on-column thermal modulator interface. J Chromatogr Sci 29(6):227–231Google Scholar
  37. 37.
    Mondello L, Tranchida PQ, Dugo P, Dugo G (2008) Comprehensive two-dimensional gas chromatography-mass spectrometry: a review. Mass Spectrom Rev 27(2):101–124CrossRefGoogle Scholar
  38. 38.
    Almstetter MF, Appel IJ, Gruber MA, Lottaz C, Timischl B, Spang R, Dettmer K, Oefner PJ (2009) Integrative normalization and comparative analysis for metabolic fingerprinting by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Anal Chem 81(14):5731–5739CrossRefGoogle Scholar
  39. 39.
    Bertsch W (2000) Two-dimensional gas chromatography. Concepts, instrumentation, and applications – Part 2: comprehensive two-dimensional gas chromatography. J High Resol Chromatogr 23(3):167–181Google Scholar
  40. 40.
    Gorecki T, Harynuk J, Panic O (2004) The evolution of comprehensive two-dimensional gas chromatography (GC x GC). J Sep Sci 27(5–6):359–379CrossRefGoogle Scholar
  41. 41.
    Koek MM, Muilwijk B, van Stee LL, Hankemeier T (2008) Higher mass loadability in comprehensive two-dimensional gas chromatography-mass spectrometry for improved analytical performance in metabolomics analysis. J Chromatogr A 1186(1–2):420–429CrossRefGoogle Scholar
  42. 42.
    Kouremenos KA, Pitt J, Marriott PJ (2010) Metabolic profiling of infant urine using comprehensive two-dimensional gas chromatography: application to the diagnosis of organic acidurias and biomarker discovery. J Chromatogr A 1217(1):104–111CrossRefGoogle Scholar
  43. 43.
    Waldhier MC, Almstetter MF, Nurnberger N, Gruber MA, Dettmer K, Oefner PJ (2011) Improved enantiomer resolution and quantification of free D-amino acids in serum and urine by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 1218(28):4537–4544CrossRefGoogle Scholar
  44. 44.
    Junge M, Huegel H, Marriott PJ (2007) Enantiomeric analysis of amino acids by using comprehensive two-dimensional gas chromatography. Chirality 19(3):228–234CrossRefGoogle Scholar
  45. 45.
    Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214(1):31–37CrossRefGoogle Scholar
  46. 46.
    Villas-Boas SG, Hojer-Pedersen J, Akesson M, Smedsgaard J, Nielsen J (2005) Global metabolite analysis of yeast: evaluation of sample preparation methods. Yeast 22(14):1155–1169CrossRefGoogle Scholar
  47. 47.
    Wu H, Southam AD, Hines A, Viant MR (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 372(2):204–212CrossRefGoogle Scholar
  48. 48.
    Kohler M, Machill S, Salzer R, Krafft C (2009) Characterization of lipid extracts from brain tissue and tumors using Raman spectroscopy and mass spectrometry. Anal Bioanal Chem 393(5):1513–1520CrossRefGoogle Scholar
  49. 49.
    Want EJ, O’Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, Trauger SA, Siuzdak G (2006) Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem 78(3):743–752CrossRefGoogle Scholar
  50. 50.
    Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA (2009) Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem 81(9):3285–3296CrossRefGoogle Scholar
  51. 51.
    Shoemaker JD, Elliot WH (1991) Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr B: Biomed Sci Appl 562(1–2):125–138CrossRefGoogle Scholar
  52. 52.
    Husek P (1998) Chloroformates in gas chromatography as general purpose derivatizing agents. J Chromatogr B: Biomed Sci Appl 717(1–2):57–91CrossRefGoogle Scholar
  53. 53.
    Villas-Boas SG, Delicado DG, Akesson M, Nielsen J (2003) Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography–mass spectrometry. Anal Biochem 322(1):134–138CrossRefGoogle Scholar
  54. 54.
    Eder K (1995) Gas chromatographic analysis of fatty acid methyl esters. J Chromatogr B Biomed Appl 671(1–2):113–131CrossRefGoogle Scholar
  55. 55.
    Halket JM, Zaikin VG (2003) Derivatization in mass spectrometry--1. Silylation. Eur J Mass Spectrom (Chichester, Eng) 9(1):1–21CrossRefGoogle Scholar
  56. 56.
    Steinhauser D, Kopka J (2007) Methods, applications and concepts of metabolite profiling: primary metabolism. EXS 97:171–194Google Scholar
  57. 57.
    Dettmer K, Almstetter MF, Appel IJ, Nurnberger N, Schlamberger G, Gronwald W, Meyer HH, Oefner PJ (2010) Comparison of serum versus plasma collection in gas chromatography–mass spectrometry-based metabolomics. Electrophoresis 31(14):2365–2373CrossRefGoogle Scholar
  58. 58.
    Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, Tulkki V, Mattila I, Seppanen-Laakso T, Oresic M, Tyynismaa H, Suomalainen A (2010) Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet 19(10):1974–1984CrossRefGoogle Scholar
  59. 59.
    Tyynismaa H, Carroll CJ, Raimundo N, Ahola-Erkkila S, Wenz T, Ruhanen H, Guse K, Hemminki A, Peltola-Mjosund KE, Tulkki V, Oresic M, Moraes CT, Pietilainen K, Hovatta I, Suomalainen A (2010) Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet 19(20):3948–3958CrossRefGoogle Scholar
  60. 60.
    Asiago VM, Alvarado LZ, Shanaiah N, Gowda GA, Owusu-Sarfo K, Ballas RA, Raftery D (2010) Early detection of recurrent breast cancer using metabolite profiling. Cancer Res 70(21):8309–8318CrossRefGoogle Scholar
  61. 61.
    Lankinen M, Schwab U, Seppanen-Laakso T, Mattila I, Juntunen K, Mykkanen H, Poutanen K, Gylling H, Oresic M (2010) Metabolomic analysis of plasma metabolites that may mediate effects of rye bread on satiety and weight maintenance in postmenopausal women. J Nutr 141(1):31–36Google Scholar
  62. 62.
    Beckstrom AC, Humston EM, Snyder LR, Synovec RE, Juul SE (2011) Application of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method to identify potential biomarkers of perinatal asphyxia in a non-human primate model. J Chromatogr A 1218(14):1899–1906CrossRefGoogle Scholar
  63. 63.
    Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, Yu Y, Xu G (2009) Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: biomarker discovery for diabetes mellitus. Anal Chim Acta 633(2):257–262CrossRefGoogle Scholar
  64. 64.
    Oresic M, Simell S, Sysi-Aho M, Nanto-Salonen K, Seppanen-Laakso T, Parikka V, Katajamaa M, Hekkala A, Mattila I, Keskinen P, Yetukuri L, Reinikainen A, Lahde J, Suortti T, Hakalax J, Simell T, Hyoty H, Veijola R, Ilonen J, Lahesmaa R, Knip M, Simell O (2008) Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med 205(13):2975–2984CrossRefGoogle Scholar
  65. 65.
    Oresic M, Tang J, Seppanen-Laakso T, Mattila I, Saarni SE, Saarni SI, Lonnqvist J, Sysi-Aho M, Hyotylainen T, Perala J, Suvisaari J (2011) Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med 3(3):19CrossRefGoogle Scholar
  66. 66.
    Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, Perkins R, Boren J, Oresic M, Backhed F (2010) The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51(5):1101–1112CrossRefGoogle Scholar
  67. 67.
    Tranchida PQ, Costa R, Donato P, Sciarrone D, Ragonese C, Dugo P, Dugo G, Mondello L (2008) Acquisition of deeper knowledge on the human plasma fatty acid profile exploiting comprehensive 2-D GC. J Sep Sci 31(19):3347–3351CrossRefGoogle Scholar
  68. 68.
    McGaw EA, Phinney KW, Lowenthal MS (2010) Comparison of orthogonal liquid and gas chromatography-mass spectrometry platforms for the determination of amino acid concentrations in human plasma. J Chromatogr A 1217(37):5822–5831CrossRefGoogle Scholar
  69. 69.
    Huang X, Regnier FE (2008) Differential metabolomics using stable isotope labeling and two-dimensional gas chromatography with time-of-flight mass spectrometry. Anal Chem 80(1):107–114CrossRefGoogle Scholar
  70. 70.
    O’Hagan S, Dunn WB, Knowles JD, Broadhurst D, Williams R, Ashworth JJ, Cameron M, Kell DB (2007) Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Anal Chem 79(2):464–476CrossRefGoogle Scholar
  71. 71.
    Gröger T, Zimmermann R (2011) Application of parallel computing to speed up chemometrics for GCxGC–TOFMS based metabolic fingerprinting. Talanta 83(4):1289–1294CrossRefGoogle Scholar
  72. 72.
    Wojtowicz P, Zrostlikova J, Kovalczuk T, Schurek J, Adam T (2010) Evaluation of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the diagnosis of inherited metabolic disorders using an automated data processing strategy. J Chromatogr A 1217(51):8054–8061CrossRefGoogle Scholar
  73. 73.
    Kouremenos KA, Harynuk JJ, Winniford WL, Morrison PD, Marriott PJ (2010) One-pot microwave derivatization of target compounds relevant to metabolomics with comprehensive two-dimensional gas chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 878(21):1761–1770CrossRefGoogle Scholar
  74. 74.
    Sinha AE, Hope JL, Prazen BJ, Nilsson EJ, Jack RM, Synovec RE (2004) Algorithm for locating analytes of interest based on mass spectral similarity in GC x GC–TOF-MS data: analysis of metabolites in human infant urine. J Chromatogr A 1058(1–2):209–215Google Scholar
  75. 75.
    Pasikanti KK, Norasmara J, Cai S, Mahendran R, Esuvaranathan K, Ho PC, Chan EC (2010) Metabolic footprinting of tumorigenic and nontumorigenic uroepithelial cells using two-dimensional gas chromatography time-of-flight mass spectrometry. Anal Bioanal Chem 398(3):1285–1293CrossRefGoogle Scholar
  76. 76.
    Kajander K, Myllyluoma E, Kyronpalo S, Rasmussen M, Sipponen P, Mattila I, Seppanen-Laakso T, Vapaatalo H, Oresic M, Korpela R (2009) Elevated pro-inflammatory and lipotoxic mucosal lipids characterise irritable bowel syndrome. World J Gastroenterol 15(48):6068–6074CrossRefGoogle Scholar
  77. 77.
    Kleemann R, van Erk M, Verschuren L, van den Hoek AM, Koek M, Wielinga PY, Jie A, Pellis L, Bobeldijk-Pastorova I, Kelder T, Toet K, Wopereis S, Cnubben N, Evelo C, van Ommen B, Kooistra T (2010) Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS One 5(1):e8817CrossRefGoogle Scholar
  78. 78.
    Koek MM, van der Kloet FM, Kleemann R, Kooistra T, Verheij ER, Hankemeier T (2010) Semi-automated non-target processing in GC x GC–MS metabolomics analysis: applicability for biomedical studies. Metabolomics 7(1):1–14CrossRefGoogle Scholar
  79. 79.
    Mervaala E, Biala A, Merasto S, Lempiainen J, Mattila I, Martonen E, Eriksson O, Louhelainen M, Finckenberg P, Kaheinen P, Muller DN, Luft FC, Lapatto R, Oresic M (2010) Metabolomics in angiotensin II-induced cardiac hypertrophy. Hypertension 55(2):508–515CrossRefGoogle Scholar
  80. 80.
    Welthagen W, Shellie RA, Spranger J, Ristow M, Zimmermann R, Fiehn O (2005) Comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC-TOF) for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1(1):65–73CrossRefGoogle Scholar
  81. 81.
    Snyder LR, Hoggard JC, Montine TJ, Synovec RE (2010) Development and application of a comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method for the analysis of L-beta-methylamino-alanine in human tissue. J Chromatogr A 1217(27):4639–4647CrossRefGoogle Scholar
  82. 82.
    Guo X, Lidstrom ME (2008) Metabolite profiling analysis of Methylobacterium extorquens AM1 by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Biotechnol Bioeng 99(4):929–940CrossRefGoogle Scholar
  83. 83.
    Yang S, Sadilek M, Synovec RE, Lidstrom ME (2009) Liquid chromatography-tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry measurement of targeted metabolites of Methylobacterium extorquens AM1 grown on two different carbon sources. J Chromatogr A 1216(15):3280–3289CrossRefGoogle Scholar
  84. 84.
    Okubo Y, Yang S, Chistoserdova L, Lidstrom ME (2010) Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1. J Bacteriol 192(7):1813–1823CrossRefGoogle Scholar
  85. 85.
    David F, Tienpont B, Sandra P (2008) Chemotaxonomy of bacteria by comprehensive GC and GC–MS in electron impact and chemical ionisation mode. J Sep Sci 31(19):3395–3403CrossRefGoogle Scholar
  86. 86.
    Mohler RE, Dombek KM, Hoggard JC, Young ET, Synovec RE (2006) Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells. Anal Chem 78(8):2700–2709CrossRefGoogle Scholar
  87. 87.
    Mohler RE, Dombek KM, Hoggard JC, Pierce KM, Young ET, Synovec RE (2007) Comprehensive analysis of yeast metabolite GC x GC–TOFMS data: combining discovery-mode and deconvolution chemometric software. Analyst 132(8):756–767CrossRefGoogle Scholar
  88. 88.
    Mohler RE, Tu BP, Dombek KM, Hoggard JC, Young ET, Synovec RE (2008) Identification and evaluation of cycling yeast metabolites in two-dimensional comprehensive gas chromatography-time-of-flight-mass spectrometry data. J Chromatogr A 1186(1–2):401–411CrossRefGoogle Scholar
  89. 89.
    Humston EM, Dombek KM, Hoggard JC, Young ET, Synovec RE (2008) Time-dependent profiling of metabolites from Snf1 mutant and wild type yeast cells. Anal Chem 80(21):8002–8011CrossRefGoogle Scholar
  90. 90.
    Humston EM, Dombek KM, Tu BP, Young ET, Synovec RE (2011) Toward a global analysis of metabolites in regulatory mutants of yeast. Anal Bioanal ChemGoogle Scholar
  91. 91.
    Cooper SJ, Finney GL, Brown SL, Nelson SK, Hesselberth J, MacCoss MJ, Fields S (2010) High-throughput profiling of amino acids in strains of the Saccharomyces cerevisiae deletion collection. Genome Res 20(9):1288–1296CrossRefGoogle Scholar
  92. 92.
    Hope JL, Prazen BJ, Nilsson EJ, Lidstrom ME, Synovec RE (2005) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection: analysis of amino acid and organic acid trimethylsilyl derivatives, with application to the analysis of metabolites in rye grass samples. Talanta 65(2):380–388CrossRefGoogle Scholar
  93. 93.
    Pierce KM, Hope JL, Hoggard JC, Synovec RE (2006) A principal component analysis based method to discover chemical differences in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC–TOFMS) separations of metabolites in plant samples. Talanta 70(4):797–804CrossRefGoogle Scholar
  94. 94.
    Kusano M, Fukushima A, Kobayashi M, Hayashi N, Jonsson P, Moritz T, Ebana K, Saito K (2007) Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J Chromatogr B Analyt Technol Biomed Life Sci 855(1):71–79CrossRefGoogle Scholar
  95. 95.
    Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250CrossRefGoogle Scholar
  96. 96.
    May P, Wienkoop S, Kempa S, Usadel B, Christian N, Rupprecht J, Weiss J, Recuenco-Munoz L, Ebenhoh O, Weckwerth W, Walther D (2008) Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics 179(1):157–166CrossRefGoogle Scholar
  97. 97.
    Kempa S, Hummel J, Schwemmer T, Pietzke M, Strehmel N, Wienkoop S, Kopka J, Weckwerth W (2009) An automated GCxGC–TOF-MS protocol for batch-wise extraction and alignment of mass isotopomer matrixes from differential 13C-labelling experiments: a case study for photoautotrophic-mixotrophic grown Chlamydomonas reinhardtii cells. J Basic Microbiol 49(1):82–91CrossRefGoogle Scholar
  98. 98.
    Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekce E, Niehaus K, Kruse O (2010) The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii. J Biol Chem 285(39):30247–30260CrossRefGoogle Scholar
  99. 99.
    Allwood JW, Erban A, de Koning S, Dunn WB, Luedemann A, Lommen A, Kay L, Loscher R, Kopka J, Goodacre R (2009) Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics 5(4):479–496CrossRefGoogle Scholar
  100. 100.
    ohanningsmeier SD, McFeeters RF (2010) Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC–TOFMS). J Food Sci 76(1):C168–C177CrossRefGoogle Scholar
  101. 101.
    Hyöyläinen T, Kallio M, Lehtonen M, Lintonen S, Perajoki P, Jussila M, Riekkola ML (2004) Comprehensive two-dimensional gas chromatography in the analysis of dietary fatty acids. J Sep Sci 27(5–6):459–467CrossRefGoogle Scholar
  102. 102.
    Vlaeminck B, Harynuk J, Fievez V, Marriott PJ (2007) Comprehensive two-dimensional gas chromatography for the separation of fatty acids in milk. Eur J Lipid Sci Technol 109(8):757–766CrossRefGoogle Scholar
  103. 103.
    Mayadunne R, Nguyen TT, Marriott PJ (2005) Amino acid analysis by using comprehensive two-dimensional gas chromatography. Anal Bioanal Chem 382(3):836–847CrossRefGoogle Scholar
  104. 104.
    Waldhier MC, Dettmer K, Gruber MA, Oefner PJ (2010) Comparison of derivatization and chromatographic methods for GC–MS analysis of amino acid enantiomers in physiological samples. J Chromatogr B Analyt Technol Biomed Life Sci 878(15–16):1103–1112Google Scholar
  105. 105.
    Ralston-Hooper K, Hopf A, Oh C, Zhang X, Adamec J, Sepulveda MS (2008) Development of GCxGC/TOF-MS metabolomics for use in ecotoxicological studies with invertebrates. Aquat Toxicol 88(1):48–52CrossRefGoogle Scholar
  106. 106.
    Ralston-Hooper KJ, Adamec J, Jannash A, Mollenhauer R, Ochoa-Acuna H, Sepulveda MS (2011) Use of GC x GC/TOF-MS and LC/TOF-MS for metabolomic analysis of Hyalella azteca chronically exposed to atrazine and its primary metabolite, desethylatrazine. J Appl Toxicol 31(5):399–410Google Scholar
  107. 107.
    Aura AM, Mattila I, Hyotylainen T, Gopalacharyulu P, Bounsaythip C, Oresic M, Oksman-Caldentey KM (2010) Drug metabolome of the simvastatin formed by human intestinal microbiota in vitro. Mol Biosyst 7(2):437–446CrossRefGoogle Scholar
  108. 108.
    Harshman RA (1970) Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics 16:1–84Google Scholar
  109. 109.
    Ni M, Reichenbach SE, Visvanathan A, TerMaat J, Ledford EB Jr (2005) Peak pattern variations related to comprehensive two-dimensional gas chromatography acquisition. J Chromatogr A 1086(1–2):165–170CrossRefGoogle Scholar
  110. 110.
    Hollingsworth BV, Reichenbach SE, Tao Q, Visvanathan A (2006) Comparative visualization for comprehensive two-dimensional gas chromatography. J Chromatogr A 1105(1–2):51–58CrossRefGoogle Scholar
  111. 111.
    Sinha AE, Hope JL, Prazen BJ, Fraga CG, Nilsson EJ, Synovec RE (2004) Multivariate selectivity as a metric for evaluating comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry subjected to chemometric peak deconvolution. J Chromatogr A 1056(1–2):145–154Google Scholar
  112. 112.
    Hoggard JC, Synovec RE (2007) Parallel factor analysis (PARAFAC) of target analytes in GC x GC–TOFMS data: automated selection of a model with an appropriate number of factors. Anal Chem 79(4):1611–1619CrossRefGoogle Scholar
  113. 113.
    Hoggard JC, Synovec RE (2008) Automated resolution of nontarget analyte signals in GC x GC–TOFMS data using parallel factor analysis. Anal Chem 80(17):6677–6688CrossRefGoogle Scholar
  114. 114.
    Pierce KM, Hoggard JC, Hope JL, Rainey PM, Hoofnagle AN, Jack RM, Wright BW, Synovec RE (2006) Fisher ratio method applied to third-order separation data to identify significant chemical components of metabolite extracts. Anal Chem 78(14):5068–5075CrossRefGoogle Scholar
  115. 115.
    Shellie RA, Welthagen W, Zrostlikova J, Spranger J, Ristow M, Fiehn O, Zimmermann R (2005) Statistical methods for comparing comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry results: metabolomic analysis of mouse tissue extracts. J Chromatogr A 1086(1–2):83–90CrossRefGoogle Scholar
  116. 116.
    Fraga CG, Prazen BJ, Synovec RE (2001) Objective data alignment and chemometric analysis of comprehensive two-dimensional separations with run-to-run peak shifting on both dimensions. Anal Chem 73(24):5833–5840CrossRefGoogle Scholar
  117. 117.
    van Mispelaar VG, Tas AC, Smilde AK, Schoenmakers PJ, van Asten AC (2003) Quantitative analysis of target components by comprehensive two-dimensional gas chromatography. J Chromatogr A 1019(1–2):15–29CrossRefGoogle Scholar
  118. 118.
    Pierce KM, Wood LF, Wright BW, Synovec RE (2005) A comprehensive two-dimensional retention time alignment algorithm to enhance chemometric analysis of comprehensive two-dimensional separation data. Anal Chem 77(23):7735–7743CrossRefGoogle Scholar
  119. 119.
    Zhang D, Huang X, Regnier FE, Zhang M (2008) Two-dimensional correlation optimized warping algorithm for aligning GC x GC–MS data. Anal Chem 80(8):2664–2671CrossRefGoogle Scholar
  120. 120.
    Oh C, Huang X, Regnier FE, Buck C, Zhang X (2008) Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry peak sorting algorithm. J Chromatogr A 1179(2):205–215CrossRefGoogle Scholar
  121. 121.
    Almstetter MF, Appel IJ, Dettmer K, Gruber MA, Oefner PJ (2011) Comparison of two algorithmic data processing strategies for metabolic fingerprinting by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J Chromatogr A 1218(39):7031–7038Google Scholar
  122. 122.
    Wang B, Fang A, Heim J, Bogdanov B, Pugh S, Libardoni M, Zhang X (2010) DISCO: distance and spectrum correlation optimization alignment for two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics. Anal Chem 82(12):5069–5081CrossRefGoogle Scholar
  123. 123.
    Castillo S, Mattila I, Miettinen J, Oresic M, Hyotylainen T (2011) Data analysis tool for comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal Chem 83(8):3058–3067CrossRefGoogle Scholar
  124. 124.
    Abdi H (2007) Bonferroni and Sidak corrections for multiple comparisons. In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage Publications, Thousand Oaks, pp 103–107Google Scholar
  125. 125.
    Westfall PH, Young SS (1993) Resampling-based multiple testing: examples and methods for P-value adjustment. John Wiley and Sons, New YorkGoogle Scholar
  126. 126.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57:289–300Google Scholar
  127. 127.
    Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2(4):171–196CrossRefGoogle Scholar
  128. 128.
    Wachsmuth CJ, Almstetter MF, Waldhier MC, Gruber MA, Nurnberger N, Oefner PJ, Dettmer K (2011) Performance evaluation of gas chromatography-atmospheric pressure chemical ionization-time-of-flight mass spectrometry for metabolic fingerprinting and profiling. Anal Chem 83(19):7514–7522CrossRefGoogle Scholar
  129. 129.
    Reichenbach SE, Tian X, Tao Q, Ledford EB Jr., Wu Z, Fiehn O (2011) Informatics for cross-sample analysis with comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry (GC×GC-HRMS). Talanta 83:1279–1288Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Martin F. Almstetter
    • 1
  • Peter J. Oefner
    • 1
  • Katja Dettmer
    • 1
  1. 1.Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany

Personalised recommendations