Advertisement

Analytical and Bioanalytical Chemistry

, Volume 402, Issue 8, pp 2577–2585 | Cite as

Monitoring induced gene expression of single cells in a multilayer microchip

  • C. Hanke
  • S. Waide
  • R. Kettler
  • P. S. DittrichEmail author
Original Paper

Abstract

We present a microfluidic system that facilitates long-term measurements of single cell response to external stimuli. The difficulty of addressing cells individually was overcome by using a two-layer microfluidic device. The top layer is designed for trapping and culturing of cells while the bottom layer is employed for supplying chemical compounds that can be transported towards the cells in defined concentrations and temporal sequences. A porous polyester membrane that supports transport and diffusion of compounds from below separates the microchannels of both layers. The performance and potential of the device are demonstrated using human embryonic kidney cells (HEK293) transfected with an inducible gene expression system. Expression of a fluorescent protein (ZsGreen1-DR) is observed while varying the concentration and exposure time of the inducer tetracycline. The study reveals the heterogeneous response of the cells as well as average responses of tens of cells that are analyzed in parallel. The microfluidic platform enables systematic studies under defined conditions and is a valuable tool for general single cell studies to obtain insights into mechanisms and kinetics that are not accessible by conventional macroscopic methods.

Figure

A two-layer microfluidic device is presented that facilitates measurements of single cell response to external stimuli

Keywords

Single cell analysis Microfluidics Multilayer soft lithography Fluorescent protein Gene expression 

Notes

Acknowledgements

We thank B. Cvetković and P. Kuhn for the fabrication of the master forms and SEM images in the FIRST facility at ETH, C. Bärtschi for building the bubble traps, F. Kurth and K. Eyer for helpful discussions, T. Robinson for proofreading the script, and J-C. Leroux for cell storage. The experiments were performed at the light microscopy centre (LMC), ETH. Furthermore the financial support from the European Research Council (ERC Starting Grant No. 203428–2, nμ-LIPIDS) and the Novartis Doctoral Fellowship Program 2010 (to C. Hanke) are gratefully acknowledged.

Supplementary material

216_2011_5595_MOESM1_ESM.pdf (953 kb)
ESM 1 (PDF 685 kb)
ESM 2

(MPG 2214 kb)

References

  1. 1.
    Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Science 329:533–538CrossRefGoogle Scholar
  2. 2.
    Toriello NM, Douglas ES, Thaitrong N, Hsiao SC, Francis MB, Bertozzi CR, Mathies RA (2008) PNAS 105:20173–20178CrossRefGoogle Scholar
  3. 3.
    Novick A, Weiner M (1957) PNAS 43:553–566CrossRefGoogle Scholar
  4. 4.
    Ko MS, Nakauchi H, Takahashi N (1990) EMBO J 9:2835–2842Google Scholar
  5. 5.
    Cai FL, Xie XS (2006) Nature 440:358–362CrossRefGoogle Scholar
  6. 6.
    Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Science 307:1962–1965CrossRefGoogle Scholar
  7. 7.
    Raser JM, O’Shea EK (2004) Science 304:1811–1814CrossRefGoogle Scholar
  8. 8.
    Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Nature 422:633–637CrossRefGoogle Scholar
  9. 9.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Science 297:1183–1186CrossRefGoogle Scholar
  10. 10.
    Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Nat Genet 31:67–73CrossRefGoogle Scholar
  11. 11.
    McAdams HH, Arkin A (1997) PNAS 94:814–819CrossRefGoogle Scholar
  12. 12.
    Swain PS, Elowitz MB, Siggia ED (2002) PNAS 99:12795–12800CrossRefGoogle Scholar
  13. 13.
    Raj A, van Oudenaarden A (2009) Annu Rev Biophys 38:255–270CrossRefGoogle Scholar
  14. 14.
    Schmid A, Kortmann H, Dittrich PS, Blank LM (2010) Curr Opin Biotechnol 21:12–20CrossRefGoogle Scholar
  15. 15.
    Lindström S, Andersson-Svahn H (2010) Lab Chip 10:3363–3372CrossRefGoogle Scholar
  16. 16.
    Hardt S, Schönfeld F (eds) (2007) Microfluidic technologies for miniaturized analysis systems. Springer, New YorkGoogle Scholar
  17. 17.
    Dittrich PS, Manz A (2006) Nat Rev Drug Discov 5:210–218CrossRefGoogle Scholar
  18. 18.
    El-Ali J, Sorger PK, Jensen KF (2006) Nature 442:403–411CrossRefGoogle Scholar
  19. 19.
    Lovchik RD, Bianco F, Matteoli M, Delamarche E (2009) Lab Chip 9:1395–1402CrossRefGoogle Scholar
  20. 20.
    Zhang S, Yan L, Altman M, Lässle M, Nugent H, Frankel F, Lauffenburger DA, Whitesides GM, Rich A (1999) Biomaterials 20:1213–1220CrossRefGoogle Scholar
  21. 21.
    Folch A, Toner M (1998) Biotechnol Prog 14:388–392CrossRefGoogle Scholar
  22. 22.
    Park MC, Hur JY, Cho HS, Park S-H, Suh KY (2011) Lab Chip 11:79–86CrossRefGoogle Scholar
  23. 23.
    Schaffhauser D, Andrini O, Ghezzi C, Forster IC, Franco-Obregon A, Egli M, Dittrich PS (2011) Lab Chip 11:3471–3478CrossRefGoogle Scholar
  24. 24.
    Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J (2009) Nat Methods 6:147–152CrossRefGoogle Scholar
  25. 25.
    Di Carlo D, Aghdam N, Lee LP (2006) Anal Chem 78:4925–4930CrossRefGoogle Scholar
  26. 26.
    Ryley J, Pereira-Smith OM (2006) Yeast 23:1065–1073CrossRefGoogle Scholar
  27. 27.
    Kortmann H, Kurth F, Blank LM, Dittrich PS, Schmid A (2009) Lab Chip 9:3047–3049CrossRefGoogle Scholar
  28. 28.
    Fiedler S, Shirley SG, Schnelle T, Fuhr G (1998) Anal Chem 70:1909–1915CrossRefGoogle Scholar
  29. 29.
    Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) PNAS 106:14195–14200CrossRefGoogle Scholar
  30. 30.
    Shim J-U, Olguin LF, Whyte G, Scott D, Babtie A, Abell C, Huck WTS, Hollfelder F (2009) J Am Chem Soc 131:15251–15256CrossRefGoogle Scholar
  31. 31.
    Cai L, Friedman N, Xie S (2006) Nature 440:358–362CrossRefGoogle Scholar
  32. 32.
    Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Science 288:113–116CrossRefGoogle Scholar
  33. 33.
    King KR, Wang S, Jayaraman A, Yarmush ML, Toner M (2008) Lab Chip 8:107–116CrossRefGoogle Scholar
  34. 34.
    Kim D-H, KinWong P, Park J, Levchenko A, Sun Y (2009) Annu Rev Biomed Eng 11:203–233CrossRefGoogle Scholar
  35. 35.
    Kurth F, Schumann CA, Blank LM, Schmid A, Manz A, Dittrich PS (2008) J Chromatogr A 1206:77–82CrossRefGoogle Scholar
  36. 36.
    Schumann CA, Dörrenhaus A, Franzke J, Lampen P, Dittrich PS, Manz A, Roos PH (2008) Anal Bioanal Chem 392:1159–1166CrossRefGoogle Scholar
  37. 37.
    Fa K, Tulock JJ, Sweedler J, Bohn PW (2005) J Am Chem Soc 127:13928–13933CrossRefGoogle Scholar
  38. 38.
    Hillen W, Berens C (1994) Annu Rev Microbiol 48:345–369CrossRefGoogle Scholar
  39. 39.
    Yao F, Svensjö T, Winkler T, Lu M, Eriksson C, Eriksson E (1998) Hum Gene Ther 9:1939–1950CrossRefGoogle Scholar
  40. 40.
    Li X, Zhao X, Fang Y, Jing X, Duong T, Fan C, Huang C-C, Kain SR (1998) J Biol Chem 273:34970–34975CrossRefGoogle Scholar
  41. 41.
    Kuhn P, Eyer K, Allner S, Lombardi D, Dittrich PS (2011) Anal Chem 83:8877–8885CrossRefGoogle Scholar
  42. 42.
    Zhang L, Patel HN, Lappe JW, Wachter RM (2006) J Am Chem Soc 128:4766–4772CrossRefGoogle Scholar
  43. 43.
    Borst P, Evers R, Kool M, Wijnholds J (1999) Biochim Biophys Acta 1461:347–357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Hanke
    • 1
  • S. Waide
    • 2
  • R. Kettler
    • 2
  • P. S. Dittrich
    • 1
    Email author
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland
  2. 2.ISAS DortmundDortmundGermany

Personalised recommendations