Analytical and Bioanalytical Chemistry

, Volume 402, Issue 10, pp 3275–3286 | Cite as

A review of recent developments in the speciation and location of arsenic and selenium in rice grain

  • Anne-Marie Carey
  • Enzo Lombi
  • Erica Donner
  • Martin D. de Jonge
  • Tracy Punshon
  • Brian P. Jackson
  • Mary Lou Guerinot
  • Adam H. Price
  • Andrew A. Meharg


Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach.

Figure 1

Synchrotron X-ray Fluorescence microtomography images for a virtual cross section of a husked immature rice grain pulsed with 133 μM germanic acid through the excised panicle stem


Arsenic Selenium Germanium Rice grain Speciation Location 



This work was supported by a Biotechnology and Biological Sciences Research Council Doctoral Training Grant. Part of this research was undertaken on the X-ray fluorescence microscopy beamline at the Australian synchrotron, Victoria, Australia. The authors thank Drs David Paterson and Daryl Howard for their help in collecting the germanium microtomography images.

Glossary of terms


The aleurone cells house hormones and enzymes instrumental in the germination and development of the grain and are rich in phytic acid. Phytic acid, or phytate, a salt of phytic acid, is the main grain store of phosphorus and is known to chelate cations including those of many micronutrients, for example iron, zinc, and calcium. The aleurone is understood to specifically accumulate phytate and metals for germination and growth of the rice seed.


Anthesis refers to the period of flowering. The point of anthesis is the point at which the anthers have emerged, demonstrating that the flower has reached the reproductive stage.


The bran comprises the pericarp, testa, and aleurone cells and is rich in micro and macronutrients, B vitamins, protein, and fibre.


The caryopsis is the whole grain (not including the husk/hull).


The embryo, or germ, is the point at which the new plant develops and contains abundant proteins, lipids, and vitamins. In the processing of rice grain for consumption, the bran and embryo are removed together, leaving the sub-aleurone and endosperm to make up the polished (white) rice that is commonly consumed.


The inner starchy part of a grain which serves as food reserves for the seed’s development. In contrast with the embryo and bran layer, the endosperm contains relatively less protein, lipids, and nutrients and is mainly composed of starch and non-starch polysaccharides.


The husk, or hull, is the outermost layer of a rice grain, a silica-rich envelope that protects against predation and disease.


The node is the section of stem between two nodes.


Nodes are joints along the plant stem at which leaves and buds develop. They are also the points at which vascular contents are transferred to leaf and/or panicle.

Nucellar tissue

The nucellar tissue is the tissue that initially surrounds the embryo. As the starchy endosperm develops and expands, the nucellar tissue becomes stretched, and is eventually crushed in the mature grain.


The panicle is the flower head of the rice plant. Technically, a panicle is an inflorescence in which each flower is on its own stalk.


The peduncle is the panicle stem, i.e. the stem supporting the inflorescence (group of flowers).


Pericarp is the ripened ovary wall. In the rice grain this thin, fibrous layer offers protection against moulds and oxidation.


  1. 1.
    Fageria NK (2007) J Plant Nutr 30:843CrossRefGoogle Scholar
  2. 2.
    Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu YG, Feldmann J, Raab A, Zhao F, Islam R, Hossain S, Yanai J (2009) Environ Sci Technol 43:1612–1617CrossRefGoogle Scholar
  3. 3.
    Meharg AA, Sun G, Williams PN, Adomako E, Deacon C, Zhu YG, Feldmann J, Raab A (2008) Environ Pollut 152:746–749CrossRefGoogle Scholar
  4. 4.
    Combs GF Jr (2001) Br J Nutr 85:517CrossRefGoogle Scholar
  5. 5.
    Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) J Am Med Assoc 276:1957–1963CrossRefGoogle Scholar
  6. 6.
    Ellis DR, Salt DE (2003) Curr Opin Plant Biol 6:273–279CrossRefGoogle Scholar
  7. 7.
    Whanger PD (2004) Br J Nutr 91:11CrossRefGoogle Scholar
  8. 8.
    Rayman MP, Infante HG, Sargent M (2008) Br J Nutr 100:238Google Scholar
  9. 9.
    Tsubura A, Lai Y, Kuwata M, Uehara N, Yoshizawa K (2011) Anti-Cancer Agent ME 11:249–253Google Scholar
  10. 10.
    Dennert G, Zwahlen M, Brinkman M, Vinceti M, Zeegers MP A, Horneber M (2011) Cochrane Database of Systematic Reviews, Issue 5. Art. No.: CD005195. doi:  10.1002/14651858.CD005195.pub2
  11. 11.
    Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Trends Plant Sci 14:436–442CrossRefGoogle Scholar
  12. 12.
    Zhao FJ, McGrath SP (2009) Curr Opin Plant Biol 12:373–380CrossRefGoogle Scholar
  13. 13.
    Feldmann J, Salaün P, Lombi E (2009) Environ Chem 6:275–289CrossRefGoogle Scholar
  14. 14.
    Husted S, Persson DP, Laursen KH, Hansen TH, Pedas P, Schiller M, Hegelund JN, Schjoerring JK (2011) J Anal At Spectrom 26:52–79CrossRefGoogle Scholar
  15. 15.
    Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Cragin DW, Meacher DM, Menzel DB (1999) Food Chem Toxicol 37:839–846CrossRefGoogle Scholar
  16. 16.
    Heitkemper DT, Vela NP, Stewart KR, Westphal CS (2001) J Anal At Spectrom 16:299–306CrossRefGoogle Scholar
  17. 17.
    Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA (2005) Environ Sci Technol 39:5531–5540CrossRefGoogle Scholar
  18. 18.
    Sun GX, Williams PN, Carey AM, Zhu YG, Deacon C, Raab A, Feldmann J, Islam RM, Meharg AA (2008) Environ Sci Technol 42:7542–7546CrossRefGoogle Scholar
  19. 19.
    Norton GJ, Islam MR, Deacon CM, Zhao F, Stroud JL, Mcgrath SP, Islam S, Jahiruddin M, Feldmann J, Price AH, Meharg AA (2009) Environ Sci Technol 43:6070–6075CrossRefGoogle Scholar
  20. 20.
    Norton GJ, Duan G, Dasgupta T, Islam MR, Lei M, Zhu Y, Deacon CM, Moran AC, Islam S, Zhao F, Stroud JL, Mcgrath SP, Feldmann J, Price AH, Meharg AA (2009) Environ Sci Technol 43:8381–8386CrossRefGoogle Scholar
  21. 21.
    Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, Feldmann J, Meharg AA (2006) Environ Sci Technol 40:4903–4908CrossRefGoogle Scholar
  22. 22.
    Zavala YJ, Gerads R, Gürleyük H, Duxbury JM (2008) Environ Sci Technol 42:3861–3866CrossRefGoogle Scholar
  23. 23.
    Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A, Meharg AA, Williams PN (2008) Environ Sci Technol 42:5008–5013CrossRefGoogle Scholar
  24. 24.
    Adomako EE, Solaiman ARM, Williams PN, Deacon C, Rahman GKMM, Meharg AA (2009) Environ Int 35:476–479CrossRefGoogle Scholar
  25. 25.
    Kohlmeyer U, Jantzen E, Kuballa J, Jakubik S (2003) Anal Bioanal Chem 377:6–13CrossRefGoogle Scholar
  26. 26.
    Hansen HR, Raab A, Price AH, Duan G, Zhu Y, Norton GJ, Feldmann J, Meharg AA (2011) J Environ Monit 13:32–34CrossRefGoogle Scholar
  27. 27.
    Beilstein MA, Whanger PD, Yang GQ (1991) Biomed Environ Sci 4:392–398Google Scholar
  28. 28.
    Williams PN, Lombi E, Sun GX, Scheckel K, Zhu YG, Feng X, Zhu J, Carey AM, Adomako E, Lawgali Y, Deacon C, Meharg AA (2009) Environ Sci Technol 43:6024–6030CrossRefGoogle Scholar
  29. 29.
    Fang Y, Zhang Y, Catron B, Chan Q, Hu Q, Caruso JA (2009) J Anal At Spectrom 24:1657–1664CrossRefGoogle Scholar
  30. 30.
    Sun GX, Liu X, Williams PN, Zhu YG (2010) Environ Sci Technol 44:6706–6711CrossRefGoogle Scholar
  31. 31.
    Li HF, Lombi E, Stroud JL, McGrath SP, Zhao FJ (2010) J Agric Food Chem 58:11837–11843CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Zheng J, Yang M, Yang G, Wu Y, Fu F (2011) Talanta 84:983–988CrossRefGoogle Scholar
  33. 33.
    Lombi E, Scheckel KG, Pallon J, Carey AM, Zhu YG, Meharg AA (2009) New Phytol 184:193–201CrossRefGoogle Scholar
  34. 34.
    Carey A, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA (2010) Plant Physiol 152:309–319CrossRefGoogle Scholar
  35. 35.
    Lombi E, Susini J (2009) Plant Soil 320:1–35CrossRefGoogle Scholar
  36. 36.
    Lombi E, Scheckel KG, Kempson IM (2011) Environ Exp Bot 72:3–17CrossRefGoogle Scholar
  37. 37.
    Smith E, Kempson I, Juhasz AL, Weber J, Skinner WM, Gräfe M (2009) Chemosphere 76:529–535CrossRefGoogle Scholar
  38. 38.
    Ren XL, Liu QL, Wu DX, Shu Q (2006) Rice Sci 13:170–178Google Scholar
  39. 39.
    Rahman MA, Hasegawa H, Rahman MM, Rahman MA, Miah MAM (2007) Chemosphere 69:942–948CrossRefGoogle Scholar
  40. 40.
    Punshon T, Guerinot ML, Lanzirotti A (2009) Ann Bot- London 103:665–672CrossRefGoogle Scholar
  41. 41.
    Krishnan S, Dayanandan P (2003) J Biosci 28:455–469CrossRefGoogle Scholar
  42. 42.
    Seyfferth AL, Webb SM, Andrews JC, Fendorf S (2011) Geochim Cosmochim Acta 75:6655–6671CrossRefGoogle Scholar
  43. 43.
    Zheng MZ, Cai C, Hu Y, Sun GX, Williams PN, Cui HJ, Li G, Zhao FJ, Zhu YG (2011) New Phytol 189:200–209CrossRefGoogle Scholar
  44. 44.
    Carey A, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Newville M, Choi Y, Price AH, Meharg AA (2011) New Phytol 192:87–98CrossRefGoogle Scholar
  45. 45.
    Kim SA, Punshon T, Lanzirotti A, Li A, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Science 314:1295–1298CrossRefGoogle Scholar
  46. 46.
    Abedin MJ, Feldmann J, Meharg AA (2002) Plant Physiol 128:1120–1128CrossRefGoogle Scholar
  47. 47.
    Zhao FJ, Stroud JL, Khan MA, McGrath SP (2011) Plant Soil In press doi:  10.1007/s11104-011-0926-4
  48. 48.
    Rivers M (2010) 4,000 Spectra or 4,000,000 ROIs per Second: EPICS Support for High-Speed Digital X-ray Spectroscopy with the XIA xMap", XRM 2010, 10th International Conference on X-ray Microscopy, 2010. See also for DXP 3.0 release (accessed 3-Dec-2010)
  49. 49.
    Ryan CG, Siddons DP, Moorhead G, Kirkham R, De Geronimo G, Etschmann B E, Dragone A, Dunn P A, Kuczewski A, Davey P, Jensen M, Ablett JM, Kuczewski J, Hough R, Paterson D (2009) J Physics: Conference Series 186: 012013Google Scholar
  50. 50.
    Ryan CG, Kirkham R, Hough RM, Moorhead G, Siddons DP, de Jonge MD, Paterson DJ, De Geronimo G, Howard DL, Cleverley JS (2010) Nucl Instr Meth A 619:37–43CrossRefGoogle Scholar
  51. 51.
    Kirkham R, Dunn PA, Kucziewski A, Siddons DP, Dodanwela R, Moorhead G, Ryan CG, De Geronimo G, Beuttenmuller R, Pinelli D, Pfeffer M, Davey P, Jensen M, Paterson D, de Jonge MD, Kusel M, McKinlay J (2010) AIP Conf Ser 1234:240CrossRefGoogle Scholar
  52. 52.
    Lombi E, de Jonge MD, Donner E, Kopittke PM, Howard DL, Kirkham R, Ryan CG, Paterson D (2011) PLoS One 6:e20626. doi: 10.1371/journal.pone.0020626 CrossRefGoogle Scholar
  53. 53.
    Paterson DJ, Boldeman JW, Cohen DD, Ryan CG (2007) AIP Conf Proc 879:864–867CrossRefGoogle Scholar
  54. 54.
    de Jonge MD, Vogt S (2010) Curr Op Str Biol 20:606–614CrossRefGoogle Scholar
  55. 55.
    Ma JF, Tamai K, Ichii M, Wu GF (2002) Plant Physiol 130:2111–2117CrossRefGoogle Scholar
  56. 56.
    Nikolic M, Nikolic N, Liang Y, Kirkby EA, Romheld V (2007) Plant Physiol 143:495–503CrossRefGoogle Scholar
  57. 57.
    Ma JF, Yamaji N (2008) Cell Mol Life Sci 65:3049–3057CrossRefGoogle Scholar
  58. 58.
    Ma F, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Proc Nat Acad Sci USA 105:9931–9935CrossRefGoogle Scholar
  59. 59.
    Norton GJ, Dasgupta T, Islam MR, Islam S, Deacon CM, Zhao F, Stroud JL, McGrath SP, Feldmann J, Price AH, Meharg AA (2010) Environ Sci Technol 44:8284–8288CrossRefGoogle Scholar
  60. 60.
    Punshon T, Jackson BP, Bertsch PM, Burger J (2004) J Environ Monitor 6:153–159CrossRefGoogle Scholar
  61. 61.
    Jackson BP, Hopkins WA, Baionno J (2003) Environ Sci Technol 37:2511–2515CrossRefGoogle Scholar
  62. 62.
    Moore KL, Schröder M, Lombi E, Zhao FJ, McGrath SP, Hawkesford MJ, Shewry PR, Grovenor CRM (2010) New Phytol 185:434–445CrossRefGoogle Scholar
  63. 63.
    Lombi E, de Jonge MD, Donner E, Ryan CG, Paterson D (2011) Anal Bioanal Chem 400:1637–1644CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anne-Marie Carey
    • 1
  • Enzo Lombi
    • 2
  • Erica Donner
    • 2
  • Martin D. de Jonge
    • 3
  • Tracy Punshon
    • 4
  • Brian P. Jackson
    • 4
  • Mary Lou Guerinot
    • 4
  • Adam H. Price
    • 1
  • Andrew A. Meharg
    • 1
  1. 1.Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
  2. 2.Centre for Environmental Risk Assessment and RemediationUniversity of South AustraliaMawson LakesAustralia
  3. 3.Australian Synchrotron, X-ray Fluorescence MicroscopyClaytonAustralia
  4. 4.Department of Biological SciencesDartmouth CollegeHanoverUSA

Personalised recommendations