Analytical and Bioanalytical Chemistry

, Volume 402, Issue 2, pp 687–691 | Cite as

Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber

Paper in Forefront

Abstract

This paper reports the first step toward the development of a glucose biosensor based on Raman spectroscopy and a photonic crystal fiber (PCF) probe. Historically, it has been very challenging to detect glucose directly by Raman spectroscopy due to its inherently small Raman scattering cross-section. In this work, we report the first quantitative glucose Raman detection in the physiological concentration range (0–25 mM) with a low laser power (2 mW), a short integration time (30 s), and an extremely small sampling volume (∼50 nL) using the highly sensitive liquid-filled PCF probe. As a proof of concept, we also demonstrate the molecular specificity of this technique in the presence of a competing sugar, such as fructose. High sensitivity, flexibility, reproducibility, low cost, small sampling volume, and in situ remote sensing capability make PCF a very powerful platform for potential glucose detection based on Raman spectroscopy.

Keywords

Glucose detection Raman spectroscopy Photonic crystal fiber Fiber sensor 

References

  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Diabetes Care 27:1047–1053CrossRefGoogle Scholar
  2. 2.
    Wang J (2008) Chem Rev 108:814–825CrossRefGoogle Scholar
  3. 3.
    Steffes PG (1999) Diabetes Technol Ther 1:129–133CrossRefGoogle Scholar
  4. 4.
    Klonoff DC, Braig J, Sterling B, Kramer C, Goldberger D, Trebino R (1998) IEEE LEOS Newsletter 12:13–14Google Scholar
  5. 5.
    Lambrecht A, Beyer T, Hebestreit K, Mischler R, Petrich W (2006) Appl Spectrosc 60:729–736CrossRefGoogle Scholar
  6. 6.
    Vrančić C, Fomichova A, Gretz N, Herrmann C, Hoecker S, Pucci A, Petrich W (2011) Analyst 136:1192–1198CrossRefGoogle Scholar
  7. 7.
    Cameron BD, Gorde HW, Satheesan B, Cote GL (1999) Diabetes Technol Ther 1:125–143CrossRefGoogle Scholar
  8. 8.
    Russell RJ, Pishko MV, Gefrides CC, McShane MJ, Cote GL (1999) Anal Chem 71:3126–3132CrossRefGoogle Scholar
  9. 9.
    Tong A, Yamauchi A, Hayashita T, Zhang Z, Smith B, Teramae N (2001) Anal Chem 73:1530–1536CrossRefGoogle Scholar
  10. 10.
    Schrader B, Bougeard D (1995) Infrared and Raman spectroscopy: methods and applications. Weinheim, VCH, 787 ppCrossRefGoogle Scholar
  11. 11.
    Berger AJ, Koo TW, Itzkan I, Horowitz G, Feld MS (1999) Appl Opt 38:2916–2926CrossRefGoogle Scholar
  12. 12.
    Lambert J, Storrie-Lombardi M, Borchert M (1998) IEEE LEOS Newsletter 12:19–22Google Scholar
  13. 13.
    Campion A, Kambhampati P (1998) Chem Soc Rev 27:241–250CrossRefGoogle Scholar
  14. 14.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) J Phys: Condens Matter 14:R597–R624CrossRefGoogle Scholar
  15. 15.
    Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) J Am Chem Soc 125:588–593CrossRefGoogle Scholar
  16. 16.
    Yonzon CR, Haynes CL, Zhang XY, Walsh JT, Van Duyne RP (2004) Anal Chem 76:78–85CrossRefGoogle Scholar
  17. 17.
    Stuart DA, Yonzon CR, Zhang X, Lyandres O, Shah NC, Glucksberg MR, Walsh JT, Van Duyne RP (2005) Anal Chem 77:4013–4019CrossRefGoogle Scholar
  18. 18.
    Lyandres O, Yuen JM, Shah NC, Van Duyne RP, Walsh JT, Glucksberg MR (2008) Diabetes Technol Ther 10:257–265CrossRefGoogle Scholar
  19. 19.
    Yuen JM, Shah NC, Walsh JT, Glucksberg MR, Duyne RP (2010) Anal Chem 82:8382–8385CrossRefGoogle Scholar
  20. 20.
    Dinish US, Yaw FC, Agarwal A, Olivo M (2011) Biosens Bioelectron 26:1987–1992CrossRefGoogle Scholar
  21. 21.
    Birks TA, Roberts PJ, Russell PSJ, Atkin DM, Shepherd TJ (1995) Electron Lett 31:1941–1943CrossRefGoogle Scholar
  22. 22.
    Cregan RF, Mangan BJ, Knight JC, Birks TA, Russell PSJ, Roberts PJ, Allan DC (1999) Science 285:1537–1539CrossRefGoogle Scholar
  23. 23.
    Ritari T, Tuominen J, Ludvigsen H, Petersen JC, Sorensen T, Hansen TP, Simonsen HR (2004) Opt Express 12:4080–4087CrossRefGoogle Scholar
  24. 24.
    Jensen JB, Pedersen LH, Hoiby PE, Nielsen LB, Hansen TP, Folkenberg JR, Riishede J, Noordegraaf D, Nielsen K, Carlsen A, Biarkley A (2004) Opt Lett 29:1974–1976CrossRefGoogle Scholar
  25. 25.
    Smolka S, Barth M, Benson O (2007) Appl Phys Lett 90:111101CrossRefGoogle Scholar
  26. 26.
    Konorov SO, Addison CJ, Schulze HG, Turner RFB, Blades MW (2006) Opt Lett 31:1911–1913CrossRefGoogle Scholar
  27. 27.
    Pristinski D, Du H (2006) Opt Lett 31:3246–3248CrossRefGoogle Scholar
  28. 28.
    Amezua-Correa A, Yang J, Finlayson CE, Peacock AC, Hayes JR, Sazio PJA, Baumberg JJ, Howdle SM (2007) Adv Funct Mater 14:2024–2030CrossRefGoogle Scholar
  29. 29.
    Han Y, Tan S, Oo MKK, Pristinski D, Sukhishvili S, Du H (2010) Adv Mater 22:2647–2651CrossRefGoogle Scholar
  30. 30.
    Yan H, Liu J, Yang C, Jin G, Gu C, Hou L (2008) Opt Express 16:8300–8305CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Shi C, Gu C, Seballos L, Zhang JZ (2007) Appl Phys Lett 90:193504CrossRefGoogle Scholar
  32. 32.
    Shi C, Lu C, Gu C, Tian L, Newhouse R, Chen S, Zhang JZ (2008) Appl Phys Lett 93:153101CrossRefGoogle Scholar
  33. 33.
    Yang X, Shi C, Wheeler D, Newhouse R, Chen B, Zhang JZ, Gu C (2010) J Opt Soc Am A 27:977–984CrossRefGoogle Scholar
  34. 34.
    Yang X, Shi C, Newhouse R, Zhang JZ, Gu C (2011) Int J Opt 2011:754610Google Scholar
  35. 35.
    Yang X, Gu C, Qian F, Li Y, Zhang JZ (2011) Anal Chem 83:5888–5894CrossRefGoogle Scholar
  36. 36.
    Mathlouthi M, Luu DV (1980) Carbohydr Res 78:225–233CrossRefGoogle Scholar
  37. 37.
    Khetani A, Tiwari VS, Harb A, Anis H (2011) Opt Express 19:15244–15254CrossRefGoogle Scholar
  38. 38.
    Patel II, Martin FL (2010) Analyst 135:3060–3069CrossRefGoogle Scholar
  39. 39.
    Patell II, Trevisan J, Singh PB, Nicholson CM, Krishnan RK, Matanhelia SS, Martin FL (2011) Anal Bioanal Chem 401:969–982CrossRefGoogle Scholar
  40. 40.
    Yang X, Tanaka Z, Newhouse R, Xu Q, Chen B, Chen S, Zhang JZ, Gu C (2010) Rev Sci Instrum 81:123103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of California, Santa CruzSanta CruzUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUSA
  3. 3.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations