Analytical and Bioanalytical Chemistry

, Volume 402, Issue 3, pp 1327–1336

New identification of proanthocyanidins in cinnamon (Cinnamomum zeylanicum L.) using MALDI-TOF/TOF mass spectrometry

  • María Luisa Mateos-Martín
  • Elisabet Fuguet
  • Carmen Quero
  • Jara Pérez-Jiménez
  • Josep Lluís Torres
Original Paper

Abstract

The inner bark of Ceylon cinnamon (Cinnamomum zeylanicum L.) is commonly used as a spice and has also been widely employed in the treatment and prevention of disease. The positive health effects associated with the consumption of cinnamon could in part be due to its phenolic composition; proanthocyanidins (PA) are the major polyphenolic component in commercial cinnamon. We present a thorough study of the PA profile of cinnamon obtained using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry. In addition to the advantages of MALDI-TOF as a sensitive technique for the analysis of high-molecular-weight compounds, the tandem arrangement allows the identification of the compounds through their fragmentation patterns from MS/MS experiments. This is the first time that this technique has been used to analyze polymeric PA. The results show that cinnamon PA are more complex than was previously thought. We show here for the first time that they contain (epi)gallocatechin and (epi)catechingallate units. As gallates (galloyl moieties) and the pyrogallol group in gallocatechins have been related to the biological activity of grape and tea polyphenols, the presence of these substructures may explain some of the properties of cinnamon extracts. MALDI-TOF/TOF reveals that cinnamon bark PA include combinations of (epi)catechin, (epi)catechingallate, (epi)gallocatechin, and (epi)afzelechin, which results in a highly heterogeneous mixture of procyanidins, prodelphinidins, and propelargonidins.

Keywords

MALDI-TOF/TOF Cinnamon Polyphenols Proanthocyanidins Mass spectrometry 

References

  1. 1.
    Gruenwald J, Freder J, Armbruester N (2010) Cinnamon and health. Crit Rev Food Sci Nutr 50:822–834CrossRefGoogle Scholar
  2. 2.
    Bolin Q, Masaru N, Ming R, Gustavo B, Yoshiharu O, Yuzo S (2003) Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res Clin Pract 62:139–148CrossRefGoogle Scholar
  3. 3.
    Mang B, Wolters M, Schmitt B, Kelb K, Lichtinghagen R, Stichtenoth DO, Hahn A (2006) Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. Eur J Clin Invest 36:340–344CrossRefGoogle Scholar
  4. 4.
    Kim SH, Hyun SH, Choung SY (2006) Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol 104:119–123CrossRefGoogle Scholar
  5. 5.
    Alam K, Mahpara S, Muzaffar AKM, Nawaz KK, A AR (2003) Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 26:3215–3218CrossRefGoogle Scholar
  6. 6.
    Hyeon K, Hee-Juhn P, Hyun-Ju J, Jong-Won C, Kyu-Seok C, Joohun H, Kyung-Tae L (2003) Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett 196:143–152CrossRefGoogle Scholar
  7. 7.
    Nishida S, Kikuichi S, Yoshioka S, Tsubaki M, Fujii Y, Matsuda H, Kubo M, Irimajiri K (2003) Induction of apoptosis in HL-60 cells treated with medicinal herbs. Am J Chin Med 31:551–562CrossRefGoogle Scholar
  8. 8.
    Hayashi K, Imanishi N, Kashiwayama Y, Kawano A, Terasawa K, Shimada Y, Ochiai H (2007) Inhibitory effect of cinnamaldehyde, derived from cinnamomi cortex, on the growth of influenza A/PR/8 virus in vitro and in vivo. Antiviral Res 74:1–8CrossRefGoogle Scholar
  9. 9.
    Premanathan M, Rajendran S, Ramanathan T, Kathiresan K, Nakashima H, Yamamoto N (2000) A survey of some Indian medicinal plants for anti-human immunodeficiency virus (HIV) activity. Indian J Med Res 112:73–77Google Scholar
  10. 10.
    Hong CH, Hur SK, Oh OJ, Kim SS, Nam KA, Lee SK (2002) Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. J Ethnopharmacol 83:153–159CrossRefGoogle Scholar
  11. 11.
    Tung Y-T, Chua M-T, Wang S-Y, Chang S-T (2008) Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour Technol 99:3908–3913CrossRefGoogle Scholar
  12. 12.
    López P, Sánchez C, Batlle R, Nerín C (2005) Solid- and vapor-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains. J Agric Food Chem 53:6939–6946CrossRefGoogle Scholar
  13. 13.
    Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26:118–122CrossRefGoogle Scholar
  14. 14.
    Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 65:1545–1560Google Scholar
  15. 15.
    Su L, Yin J-J, Charles D, Zhou K, Moore J, Yu L (2007) Total phenolic contents, chelating capacities, and radical-scavenging properties of black peppercorn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chem 100:990–997CrossRefGoogle Scholar
  16. 16.
    Murcia MA, Egea I, Romojaro F, Parras P, Jiménez AM, Martínez-Tomé M (2004) Antioxidant evaluation in dessert spices compared with common food additives. Influence of irradiation procedure. Am Chem Soc 52:1872–1881Google Scholar
  17. 17.
    Okawa M, Kinjo J, Nohara T, Ono M (2001) DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol Pharm Bull 24:1202–1205CrossRefGoogle Scholar
  18. 18.
    Preuss HG, Echard B, Polansky MM, Anderson R (2006) Whole cinnamon and aqueous extracts ameliorate sucrose-induced blood pressure elevations in spontaneously hypertensive rats. J Am Coll Nutr 25:144–150Google Scholar
  19. 19.
    Subash Babu P, Prabuseenivasan S, Ignacimuthu S (2007) Cinnamaldehyde—a potential antidiabetic agent. Phytomedicine 14:15–22CrossRefGoogle Scholar
  20. 20.
    Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin-like compounds—nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80:1094–1117CrossRefGoogle Scholar
  21. 21.
    Anderson RA, Broadhurst CL, Polansky MM, Schmidt WF, Alam Khan VPF, Schoene NW, Graves DJ (2004) Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J Agric Food Chem 52:65–70CrossRefGoogle Scholar
  22. 22.
    Ziegenfuss TN, Hofheins JE, Mendel RW, Landis J, Anderson RA (2006) Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J Int Soc Sports Nutr 3:45–53CrossRefGoogle Scholar
  23. 23.
    Nonaka G-I, Morimoto S, Nishioka I (1983) Tannins and related compounds. Part 13. Isolation and structures of trimeric, tetrameric, and pentameric proanthocyanidins from cinnamon. J Chem Soc Perkin Trans 1:2139–2145CrossRefGoogle Scholar
  24. 24.
    Touriño S, Fuguet E, Jáuregui O, Saura-Calixto F, Cascante M, Torres JL (2008) High-resolution liquid chromatography/electrospray ionization time-of-flight mass spectrometry combined with liquid chromatography/electrospray ionization tandem mass spectrometry to identify polyphenols from grape antioxidant dietary fiber. Rapid Commun Mass Spectrom 22:3489–3500CrossRefGoogle Scholar
  25. 25.
    Monagas M, Gómez-Cordovés C, Bartolomé B, Laureano O, Ricardo da Silva JM (2003) Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. cv. Graciano, Tempranillo, and Cabernet Sauvignon. J Agric Food Chem 51:6475–6481CrossRefGoogle Scholar
  26. 26.
    Gu L, Kelm MA, Hammerstone JF, Zhang Z, Beecher G, Holden J, Haytowitz D, Prior RL (2003) Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods. J Mass Spectrom 38:1272–1280CrossRefGoogle Scholar
  27. 27.
    Touriño S, Pérez-Jiménez J, Mateos-Martín ML, Fuguet E, Vinardell MP, Cascante M, Torres JL (2011) Metabolites in contact with the rat digestive tract after ingestion of a phenolic-rich dietary fiber matrix. J Agric Food Chem 59:5955–5963CrossRefGoogle Scholar
  28. 28.
    Jimenez-Ramsey LM, Rogler JC, Housley TL, Butler LG, Elkin RG (1994) Absorption and distribution of 14C-labeled condensed tannins and related sorghum phenolics in chickens. J Agric Food Chem 42:963–967CrossRefGoogle Scholar
  29. 29.
    Terrill TH, Waghorn GC, Woolley DJ, McNabb WC, Barry TN (1994) Assay and digestion of C-labelled condensed tannins in the gastrointestinal tract of sheep. Br J Nutr 72:467–477CrossRefGoogle Scholar
  30. 30.
    Gonthier M-P, Donovan JL, Texier O, Felgines C, Rémésy C, Scalbert A (2003) Metabolism of dietary procyanidins in rats. Free Radic Biol Med 35:837–844CrossRefGoogle Scholar
  31. 31.
    Déprez S, Brezillon C, Rabot S, Philippe C, Mila I, Lapierre C, Scalbert A (2000) Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr 130:2733–2738Google Scholar
  32. 32.
    Monagas M, Quintanilla-López JE, Gómez-Cordovés C, Bartolomé B, Lebrón-Aguilar R (2010) MALDI-TOF MS analysis of plant proanthocyanidins. J Pharm Biomed Anal 51:358–372CrossRefGoogle Scholar
  33. 33.
    Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Prior RL (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem 51:7513–7521CrossRefGoogle Scholar
  34. 34.
    Lazarus SA, Adamson GE, Hammerstone JF, Schmitz HH (1999) High-performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in foods and beverages. J Agric Food Chem 47:3693–3701CrossRefGoogle Scholar
  35. 35.
    Krueger CG, Dopke NC, Treichel PM, Folts J, Reed JD (2000) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of polygalloyl polyflavan-3-ols in grape seed extract. J Agric Food Chem 48:1663–1667CrossRefGoogle Scholar
  36. 36.
    Vivas N, Nonier M-F, Gaulejac NVd, Absalon C, Bertrand A, Mirabel M (2004) Differentiation of proanthocyanidin tannins from seeds, skins and stems of grapes (Vitis vinifera) and heartwood of Quebracho (Schinopsis balansae) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and thioacidolysis/liquid chromatography/electrospray ionization mass spectrometry. Anal Chim Acta 513:247–256CrossRefGoogle Scholar
  37. 37.
    Hayasaka Y, Waters EJ, Cheynier V, Herderich MJ, Vidal S (2003) Characterization of proanthocyanidins in grape seeds using electrospray mass spectrometry. Rapid Commun Mass Spectrom 17:9–16CrossRefGoogle Scholar
  38. 38.
    Flamini R (2003) Mass spectrometry in grape and wine chemistry. Part I: polyphenols. Mass Spectrom Rev 22:218–250CrossRefGoogle Scholar
  39. 39.
    Li H-J, Deinzer ML (2007) Tandem mass spectrometry for sequencing proanthocyanidins. Anal Chem 79:1739–1748CrossRefGoogle Scholar
  40. 40.
    March RE, Lewars EG, Stadey CJ, Miao X-S, Zhao X, Metcalfe CD (2006) A comparison of flavonoid glycosides by electrospray tandem mass spectrometry. Int J Mass Spectrom 248:61–85CrossRefGoogle Scholar
  41. 41.
    Friedrich W, Eberhardt A, Galensa R (2000) Investigation of proanthocyanidins by HPLC with electrospray ionization mass spectrometry. Eur Food Res Technol 211:56–64CrossRefGoogle Scholar
  42. 42.
    Ricardo da Silva JM, Rigaud J, Cheynier V, Cheminat A, Moutounet M (1991) Procyanidin dimers and trimers from grape seeds. Phytochemistry 30:1259–1264CrossRefGoogle Scholar
  43. 43.
    Lizárraga D, Lozano C, Briedé JJ, Van Delft JH, Touriño S, Centelles JJ, Torres JL, Cascante M (2007) The importance of polymerization and galloylation for the antiproliferative properties of procyanidin-rich natural extracts. FEBS J 274:4802–4811CrossRefGoogle Scholar
  44. 44.
    Touriño S, Lizárraga D, Carreras A, Lorenzo S, Ugartondo V, Mitjans M, Vinardell MP, Juliá L, Cascante M, Torres JL (2008) Highly galloylated tannin fractions from witch hazel (Hamamelis virginiana) bark: electron transfer capacity, in vitro antioxidant activity, and effects on skin-related cells. Chem Res Toxicol 21:696–704CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • María Luisa Mateos-Martín
    • 1
  • Elisabet Fuguet
    • 1
    • 2
  • Carmen Quero
    • 1
  • Jara Pérez-Jiménez
    • 1
  • Josep Lluís Torres
    • 1
  1. 1.Institute for Advanced Chemistry of Catalonia (IQAC), CSICBarcelonaSpain
  2. 2.Departament de Química AnalíticaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations