Advertisement

Analytical and Bioanalytical Chemistry

, Volume 402, Issue 3, pp 1073–1081 | Cite as

Discrimination of primitive endoderm in embryoid bodies by Raman microspectroscopy

  • Maha A. El-Hagrasy
  • Eiichi Shimizu
  • Masato Saito
  • Yoshinori Yamaguchi
  • Eiichi Tamiya
Original Paper

Abstract

Embryoid bodies (EBs), derived from aggregated embryonic stem (ES) cells, are capable of differentiating into all three germ layers, including the endoderm, mesoderm, and ectoderm. The initial stage of EB differentiation is the formation of a primitive endoderm (PE) layer located at the periphery of the aggregate. Raman microspectroscopy was employed to segregate PE cells from undifferentiated ES cells. The Raman spectra of the PE cells of the periphery of EBs, formed upon the withdrawal of leukemia inhibitory factor (LIF), were compared with those of the undifferentiated ES cells of the core of cell aggregates, formed in the presence of LIF. It was noticed that the PE cells have high contents of proteins and low contents of nucleic acids, lipids, and carbohydrates compared with ES cells. Also, we established the presence of another population of PE cells located in the core of the EBs. In addition, we identified some specific Raman markers to distinguish PE cells from ES cells (e.g., I 1003/I 937). This is the first study to investigate the PE cells of live EBs and define some Raman markers to distinguish them from undifferentiated ES cells.

Figure

Comparison between the Raman signature of primitive endoderm cells (PE) and undifferentiated embryonic stem cells (ES)

Keywords

Embryoid bodies Differentiation Primitive endoderm Raman microspectroscopy Glycogen 

Notes

Acknowledgment

This work was supported by Special Coordination Funds for Promoting Science and Technology/Special Grants for Projects Promoting Science and Technology through Regional Industry–Academia–Government Cooperation and by Special Coordination Funds for Promoting Science and Technology, Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. 1.
    Martin GR (1981) Proc Natl Acad Sci USA 78:7634–7638CrossRefGoogle Scholar
  2. 2.
    Beddington RS, Robertson EJ (1989) Development 105:733–737Google Scholar
  3. 3.
    Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988) Nature 336:684–687CrossRefGoogle Scholar
  4. 4.
    Yoshida K, Chambers I, Nichols J, Smith A, Saito M, Yasukawa K, Shoyab M, Taga T, Kishimoto T (1994) Mech Dev 45:163–171CrossRefGoogle Scholar
  5. 5.
    Leahy A, Xiong JW, Kuhnert F, Stuhlmann H (1999) J Exp Zool 284:67–81CrossRefGoogle Scholar
  6. 6.
    Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) J Embryol Exp Morphol 87:27–45Google Scholar
  7. 7.
    Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW (2002) Biotechnol Bioeng 78:442–453CrossRefGoogle Scholar
  8. 8.
    Keller G, Kennedy M, Papayannopoulou T, Wiles MV (1993) Mol Cell Biol 13:473–486Google Scholar
  9. 9.
    Hescheler J, Fleischmann BK, Lentini S, Maltsev VA, Rohwedel J, Wobus AM, Addicks K (1997) Cardiovasc Res 36:149–162CrossRefGoogle Scholar
  10. 10.
    Hopfl G, Gassmann M, Desbaillets I (2004) Methods Mol Biol 254:79–98Google Scholar
  11. 11.
    Hossain MM, Shimizu E, Saito M, Rao SR, Yamaguchi Y, Tamiya E (2010) Analyst 135:1624–1630CrossRefGoogle Scholar
  12. 12.
    Koike M, Sakaki S, Amano Y, Kurosawa H (2007) J Biosci Bioeng 4:294–299CrossRefGoogle Scholar
  13. 13.
    Murray P, Edgar D (2001) Mech Dev 101:213–215CrossRefGoogle Scholar
  14. 14.
    Shen MM, Leder P (1992) Proc Natl Acad Sci USA 89:8240–8244CrossRefGoogle Scholar
  15. 15.
    Murray P, Edgar D (2001) Differentiation 68:227–234CrossRefGoogle Scholar
  16. 16.
    Li S, Edgar D, Fassler R, Wadsworth W, Yurchenco PD (2003) Dev Cell 4:613–624CrossRefGoogle Scholar
  17. 17.
    Notingher I, Bisson I, Bishop AE, Randle WL, Polak JMP, Hench LL (2004) Anal Chem 76:3185–3193CrossRefGoogle Scholar
  18. 18.
    Notingher I, Verrier S, Romanska H, Bishop AE, Polak JM, Hench LL (2002) Spectrosc-Int J 16:43–51Google Scholar
  19. 19.
    Krafft C, Knetschke T, Siegner A, Funk RHW, Salzer R (2003) Vib Spectrosc 32:75–83CrossRefGoogle Scholar
  20. 20.
    Draux F, Jeannesson P, Beljebbar A, Tfayli A, Fourre N, Manfait M, Sulé-Suso J, Sockalingum GD (2009) Analyst 134:542–548CrossRefGoogle Scholar
  21. 21.
    Zolladek A, Pascut FC, Patel P, Notingher I (2011) J Raman Spectrosc 42:251–258CrossRefGoogle Scholar
  22. 22.
    Pijanka JK, Kumar D, Dale T, Yousef I, Parkes G, Untereiner V, Yang Y, Dumas P, Collins D, Manfait M, Sockalingum GD, Forsyth NR, Sulé-Suso J (2010) Analyst 135:3126–3132CrossRefGoogle Scholar
  23. 23.
    Nawaz H, Bonnier F, Knife P, Howe O, Lyng FM, Meade AD, Byrne HJ (2010) Analyst 135:3070–3076CrossRefGoogle Scholar
  24. 24.
    Schulze HG, Konorov SO, Caron NJ, Piret JM, Blades MW, Turner RFB (2010) Anal Chem 82:5020–5027CrossRefGoogle Scholar
  25. 25.
    Chan JW, Lieu DK, Huser T, Li RA (2009) Anal Chem 81:1324–1331CrossRefGoogle Scholar
  26. 26.
    Yamada T, Yoshikawa M, Kanada S, Kato Y, Nakajima Y, Ishizaka S, Tsunoda Y (2002) Stem Cells 20:146–154CrossRefGoogle Scholar
  27. 27.
    Sampath P, Pritchard DK, Pabon L, Reinecke H, Schwartz SM, Morris DR, Murry CE (2008) Cell Stem Cell 2:448–460CrossRefGoogle Scholar
  28. 28.
    Jones EA, Tosh D, Wilson DI, Lindsay S, Forrester M (2002) Exp Cell Res 272:15–22CrossRefGoogle Scholar
  29. 29.
    Hamazaki T, Oka M, Yamanaka S, Terada N (2004) J Cell Sci 117:5681–5686CrossRefGoogle Scholar
  30. 30.
    Murray P, Edgar D (2004) Philos Trans R Soc Lond B 359:1009–1020CrossRefGoogle Scholar
  31. 31.
    Mountford P, Nichols J, Zevnik B, O’Brien C, Smith A (1998) Reprod Fertil Dev 10:527–533CrossRefGoogle Scholar
  32. 32.
    Heraud P, Ng ES, Caine S, Yu QC, Hirst C, Mayberry R, Bruce A, Wood BR, McNaughton D, Stanley EG, Elefanty AG (2010) Stem Cell Res 4:140–147CrossRefGoogle Scholar
  33. 33.
    Rula ME, Cai KQ, Moore R, Yang DH, Staub CM, Capo-chichi CD, Jablonski SA, Howe PH, Smith ER, Xu XX (2007) Genesis 45:327–338CrossRefGoogle Scholar
  34. 34.
    Rossant J, Chazaud C, Yamanaka Y (2003) Philos Trans R Soc Lond B Biol Sci 358:1341–8134CrossRefGoogle Scholar
  35. 35.
    Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Dev Cell 10:615–624CrossRefGoogle Scholar
  36. 36.
    Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008) Development 135:3081–3091CrossRefGoogle Scholar
  37. 37.
    Konorov SO, Schulze HG, Piret JM, Turner RFB, Blades MW (2011) J Raman Spectrosc 42:1135–1141CrossRefGoogle Scholar
  38. 38.
    Pickford CE, Holley RJ, Rushton G, Stavridis MP, Ward CM, Merry CLR (2011) Stem Cells 29:629–640CrossRefGoogle Scholar
  39. 39.
    Mainreck N, Br’ezillon S, Sockalingum GD, Maquart FX, Manfait M, Wegrowski Y (2011) J Pharm Sci 100:441–450CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Photonics Advanced Research Center, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Department of Applied Physics, Graduate School of EngineeringOsaka UniversitySuitaJapan
  3. 3.Chemistry Department, Faculty of ScienceMansoura University, New DamiettaDamiettaEgypt

Personalised recommendations