Advertisement

Analytical and Bioanalytical Chemistry

, Volume 402, Issue 7, pp 2335–2345 | Cite as

Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry

  • Josep Sanchís
  • Lina Kantiani
  • Marta Llorca
  • Fernando Rubio
  • Antoni Ginebreda
  • Josep Fraile
  • Teresa Garrido
  • Marinella FarréEmail author
Original Paper

Abstract

Despite having been the focus of much attention from the scientific community during recent years, glyphosate is still a challenging compound from an analytical point of view because of its physicochemical properties: relatively low molecular weight, high polarity, high water solubility, low organic solvent solubility, amphoteric behaviour and ease to form metal complexes. Large efforts have been directed towards developing suitable, sensitive and robust methods for the routine analysis of this widely used herbicide. In the present work, a magnetic particle immunoassay (IA) has been evaluated for fast, reliable and accurate part-per-trillion monitoring of glyphosate in water matrixes, in combination with a new analytical method based on solid-phase extraction (SPE), followed by liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS), for the confirmatory analysis of positive samples. The magnetic particle IA has been applied to the analysis of about 140 samples of groundwater from Catalonia (NE Spain) collected during four sampling campaigns. Glyphosate was present above limit of quantification levels in 41% of the samples with concentrations as high as 2.5 μg/L and a mean concentration of 200 ng/L. Good agreement was obtained when comparing the results from IA and on-line SPE-LC-MS/MS analyses. In addition, no false negatives were obtained by the use of the rapid IA. This is one of the few works related to the analysis of glyphosate in real groundwater samples and the presented data confirm that, although it has low mobility in soils, glyphosate is capable of reaching groundwater.

Keywords

Glyphosate Groundwater ELISA Immunoassay On-line SPE LC-MS/MS 

Notes

Acknowledgements

This work has been supported by the Agencia Catalana de l’Aigua (ACA) and the Spanish Ministry of Science and Innovation through the projects SCARCE Consolider-Ingenio 2010 CSD2009-00065 and CEMAGUA (CGL2007-64551/HID). The authors thank the collaboration with Abraxis that has supplied for free the immunoreagents involved in this work.

Supplementary material

216_2011_5541_MOESM1_ESM.pdf (70 kb)
ESM 1 (PDF 69.7 kb)

References

  1. 1.
    U.S. EPA (2006) Technical factsheet on: GLYPHOSATEGoogle Scholar
  2. 2.
    Borggaard OK, Gimsing AL (2008) Pest Management Science 64:441–456CrossRefGoogle Scholar
  3. 3.
    Torstensson L, Borjesson E, Stenstrom (2005) J Pest Manag Sci 61:881–886CrossRefGoogle Scholar
  4. 4.
    Schneider MI, Sanchez N, Pineda S, Chi H, Ronco A (2009) Chemosphere 76:1451–1455CrossRefGoogle Scholar
  5. 5.
    Relyea RA (2005) Ecol Appl 15:1118–1124CrossRefGoogle Scholar
  6. 6.
    Relyea RA (2005) Arch Environ Contam Toxicol 48:351–357CrossRefGoogle Scholar
  7. 7.
    Relyea RA (2005) Ecol Appl 15:618–627CrossRefGoogle Scholar
  8. 8.
    Relyea RA (2009) Oecologia 159:363–376CrossRefGoogle Scholar
  9. 9.
    Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE (2005) Environ Heal Perspect 113:716–720CrossRefGoogle Scholar
  10. 10.
    Kudzin ZH, Gralak DK, Drabowicz J, Luczak J (2002) J Chrom A 947:129–141CrossRefGoogle Scholar
  11. 11.
    Kataoka H, Ryu S, Sakiyama N, Makita M (1996) J Chrom A 726:253–258CrossRefGoogle Scholar
  12. 12.
    Royer A, Beguin S, Tabet JC, Hulot S, Reding MA, Communal PY (2000) Anal Chem 72:3826–3832CrossRefGoogle Scholar
  13. 13.
    Hanke I, Singer H, Hollender J (2008) Anal Bioanal Chem 391:2265–2276CrossRefGoogle Scholar
  14. 14.
    Martins-Júnior HA, Lebre DT, Wang AY, Pires MAF, Bustillos OV (2009) Rapid Communications in Mass Spectrometry 23:1029–1034CrossRefGoogle Scholar
  15. 15.
    Popp M, Hann S, Mentler A, Fuerhacker M, Stingeder G, Koellensperger G (2008) Anal Bioanal Chem 391:695–699CrossRefGoogle Scholar
  16. 16.
    Clegg BS, Stephenson GR, Hall JC (1999) J Agric Food Chem 47:5031–5037CrossRefGoogle Scholar
  17. 17.
    Lee EA, Zimmerman LR, Bhullar BS, Thurman EM (2002) Anal Chem 74:4937–4943CrossRefGoogle Scholar
  18. 18.
    Rubio F, Veldhuis LJ, Clegg BS, Fleeker JR, Hall JC (2003) J Agric Food Chem 51:691–696CrossRefGoogle Scholar
  19. 19.
    Mallat E, Barceló D (1998) J Chrom A 823:129–136CrossRefGoogle Scholar
  20. 20.
    Motojyuku M, Saito T, Akieda K, Otsuka H, Yamamoto I, Inokuchi S (2008) J Chromatogr B 875:509–514CrossRefGoogle Scholar
  21. 21.
    Byer JD, Struger J, Klawunn P, Todd A, Sverko ED (2008) Environ Sci Technol 42:6052–6057CrossRefGoogle Scholar
  22. 22.
    Pirkko L, Sari R, Unto N, Lauri J, Katri S, Eila T (2009) Plant Soil 323:267–283CrossRefGoogle Scholar
  23. 23.
    Elisabet B, Lennart T (2000) J Chrom A 886:207–216CrossRefGoogle Scholar
  24. 24.
    Servei Meteorològic de la Generalitat de Catalunya (2008) Report on the precipitation measurement in Catalonia during the rainfall year 2007–2008 (in Catalan)Google Scholar
  25. 25.
    Kolpin Dana W, Schnoebelen Douglas J, Michael TE (2004) Ground Water 42:601–608CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Josep Sanchís
    • 1
  • Lina Kantiani
    • 1
  • Marta Llorca
    • 1
  • Fernando Rubio
    • 2
  • Antoni Ginebreda
    • 1
  • Josep Fraile
    • 3
  • Teresa Garrido
    • 3
  • Marinella Farré
    • 1
    Email author
  1. 1.Institute of Environmental Assessment and Water Research (IDAEA-CSIC)BarcelonaSpain
  2. 2.Abraxis LLCWarminsterUSA
  3. 3.Catalan Water AgencyBarcelonaSpain

Personalised recommendations