Analytical and Bioanalytical Chemistry

, Volume 402, Issue 3, pp 1065–1072 | Cite as

Trapping cells on a stretchable microwell array for single-cell analysis

  • Yuli Wang
  • Pavak Shah
  • Colleen Phillips
  • Christopher E. Sims
  • Nancy L. Allbritton
Original Paper

Abstract

There is a need for a technology that can be incorporated into routine laboratory procedures to obtain a continuous, quantitative, fluorescence-based measurement of the dynamic behaviors of numerous individual living cells in parallel, while allowing other manipulations, such as staining, rinsing, and even retrieval of targeted cells. Here, we report a simple, low-cost microarray platform that can trap cells for dynamic single-cell analysis of mammalian cells. The elasticity of polydimethylsiloxane (PDMS) was utilized to trap tens of thousands of cells on an array. The PDMS microwell array was stretched by a tube through which cells were loaded on the array. Cells were trapped on the array by removal of the tube and relaxation of the PDMS. Once that was accomplished, the cells remained trapped on the array without continuous application of an external force and permitted subsequent manipulations, such as staining, rinsing, imaging, and even isolation of targeted cells. We demonstrate the utility of this platform by multicolor analysis of trapped cells and monitoring in individual cells real-time calcium flux after exposure to the calcium ionophore ionomycin. Additionally, a proof of concept for target cell isolation was demonstrated by using a microneedle to locally deform the PDMS membrane in order to retrieve a particular cell from the array.

Keywords

Bioanalytical methods Cell systems/single-cell analysis Biochips/high-throughput screening 

Supplementary material

216_2011_5535_MOESM1_ESM.pdf (592 kb)
ESM 1(PDF 592 kb)

References

  1. 1.
    Spiller DG, Wood CD, Rand DA, White MRH (2010) Nature 465(7299):736–745CrossRefGoogle Scholar
  2. 2.
    Berridge MJ, Bootman MD, Roderick HL (2003) Nat Rev 4:517–529CrossRefGoogle Scholar
  3. 3.
    Bodey B (2002) Exp Opin Biol Ther 2(4):371–393CrossRefGoogle Scholar
  4. 4.
    Altschuler SJ, Wu LF (2010) Cell 141(4):559–563CrossRefGoogle Scholar
  5. 5.
    Charnley M, Textor M, Khademhosseini A, Lutolf MP (2009) Integr Biol 1(11–12):625–634CrossRefGoogle Scholar
  6. 6.
    Kim SM, Lee SH, Suh KY (2008) Lab on a Chip 8(7):1015–1023CrossRefGoogle Scholar
  7. 7.
    Rettig JR, Folch A (2005) Anal Chem 77(17):5628–5634CrossRefGoogle Scholar
  8. 8.
    Lee WC, Rigante S, Pisano AP, Kuypers FA (2010) Lab on a Chip 10(21):2952–2958CrossRefGoogle Scholar
  9. 9.
    Ozawa T, Kinoshita K, Kadowaki S, Tajiri K, Kondo S, Honda R, Ikemoto M, Piao L, Morisato A, Fukurotani K, Kishi H, Muraguchi A (2009) Lab on a Chip 9(1):158–163CrossRefGoogle Scholar
  10. 10.
    Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Biomaterials 20(23–24):2363–2376CrossRefGoogle Scholar
  11. 11.
    Falconnet D, Csucs G, Grandin HM, Textor M (2006) Biomaterials 27(16):3044–3063CrossRefGoogle Scholar
  12. 12.
    Liberski AR, Delaney JT, Schubert US (2011) ACS Comb Sci 13(2):190–195CrossRefGoogle Scholar
  13. 13.
    Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson H, van den Berg A (2005) Lab on a Chip 5(1):49–55CrossRefGoogle Scholar
  14. 14.
    Di Carlo D, Wu LY, Lee LP (2006) Lab on a Chip 6(11):1445–1449CrossRefGoogle Scholar
  15. 15.
    Hosokawa M, Arakaki A, Takahashi M, Mori T, Takeyama H, Matsunaga T (2009) Anal Chem 81(13):5308–5313CrossRefGoogle Scholar
  16. 16.
    Schiffenbauer YS, Kalma Y, Trubniykov E, Gal-Garber O, Weisz L, Halamish A, Sister M, Berke G (2009) Lab on a Chip 9(20):2965–2972CrossRefGoogle Scholar
  17. 17.
    Liu W, Dechev N, Foulds IG, Burke R, Parameswaran A, Park EJ (2009) Lab on a Chip 9(16):2381–2390CrossRefGoogle Scholar
  18. 18.
    Taff BM, Voldman J (2005) Anal Chem 77(24):7976–7983CrossRefGoogle Scholar
  19. 19.
    Grier DG (2003) Nature 424(6950):810–816CrossRefGoogle Scholar
  20. 20.
    Shi JJ, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ (2009) Lab on a Chip 9(20):2890–2895CrossRefGoogle Scholar
  21. 21.
    Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Proc Natl Acad Sci U S A 106(34):14195–14200CrossRefGoogle Scholar
  22. 22.
    Nilsson J, Evander M, Hammarstrom B, Laurell T (2009) Anal Chim Acta 649(2):141–157CrossRefGoogle Scholar
  23. 23.
    Lindstrom S, Andersson-Svahn H (2010) Lab on a Chip 10(24):3363–3372CrossRefGoogle Scholar
  24. 24.
    Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Science 312:217–224CrossRefGoogle Scholar
  25. 25.
    Sims CE, Allbritton NL (2007) Lab Chip 7:423–440CrossRefGoogle Scholar
  26. 26.
    Deutsch M, Deutsch A, Shirihai O, Hurevich I, Afrimzon E, Shafrana Y, Zurgila N (2006) Lab Chip 6:995–1000CrossRefGoogle Scholar
  27. 27.
    Park MC, Hur JY, Cho HS, Park SH, Suh KY (2011) Lab Chip 11(1):79–86CrossRefGoogle Scholar
  28. 28.
    Yamamura S, Kishi H, Tokimitsu Y, Kondo S, Honda R, Rao SR, Omori M, Tamiya E, Muraguchi A (2005) Anal Chem 77(24):8050–8056CrossRefGoogle Scholar
  29. 29.
    Fuchs AB, Romani A, Freida D, Medoro G, Abonnenc M, Altomare L, Chartier I, Guergour D, Villiers C, Marche PN, Tartagni M, Guerrieri R, Chatelain F, Manaresi N (2006) Lab Chip 6(1):121–126CrossRefGoogle Scholar
  30. 30.
    Gray DS, Tan JL, Voldman J, Chen CS (2004) Biosens Bioelectron 19(12):1765–1774CrossRefGoogle Scholar
  31. 31.
    Qin D, Xia YN, Whitesides GM (2010) Nat Protoc 5(3):491–502CrossRefGoogle Scholar
  32. 32.
    Datasheet T SU-8 Photoresist Formulations. http://www.microchem.com/products/su_eight.htm
  33. 33.
    Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2010). Current Protocols in Molecular Biology:14.20.11-14.20.17Google Scholar
  34. 34.
    Malpica N, de Solorzano CO, Vaquero JJ, Santos A, Vallcorba I, GarciaSagredo JM, del Pozo F (1997) Cytometry 28(4):289–297CrossRefGoogle Scholar
  35. 35.
    Product Information, SYLGARD® 184 Silicone Elastomer. Dow Corning Corporation.Google Scholar
  36. 36.
    Liang XJ, Liu AQ, Lim CS, Ayi TC, Yap PH (2007) Sens Actuators A-Phys 133(2):349–354CrossRefGoogle Scholar
  37. 37.
    Horvath R, Lindvold LR, Larsen NB (2003) J Micromech Microeng 13(3):419–424CrossRefGoogle Scholar
  38. 38.
    Zhang XL, Yin HB, Cooper JM, Haswell SJ (2006) Electrophoresis 27(24):5093–5100CrossRefGoogle Scholar
  39. 39.
    Luo CX, Li H, Xiong CY, Peng XL, Kou QL, Chen Y, Ji H, Ouyang Q (2007) Biomedical Microdevices 9(4):573–578CrossRefGoogle Scholar
  40. 40.
    Tekin H, Anaya M, Brigham MD, Nauman C, Langer R, Khademhosseini A (2010) Lab Chip 10(18):2411–2418CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yuli Wang
    • 1
  • Pavak Shah
    • 2
    • 3
  • Colleen Phillips
    • 1
  • Christopher E. Sims
    • 1
  • Nancy L. Allbritton
    • 1
    • 2
    • 3
  1. 1.Department of ChemistryUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Biomedical EngineeringUniversity of North CarolinaChapel HillUSA
  3. 3.North Carolina State UniversityRaleighUSA

Personalised recommendations