Advertisement

Analytical and Bioanalytical Chemistry

, Volume 402, Issue 8, pp 2655–2662 | Cite as

Fragmentation methods on the balance: unambiguous top–down mass spectrometric characterization of oxaliplatin–ubiquitin binding sites

  • Samuel M. Meier
  • Yury O. Tsybin
  • Paul J. Dyson
  • Bernhard K. Keppler
  • Christian G. HartingerEmail author
Original Paper

Abstract

The interaction between oxaliplatin and the model protein ubiquitin (Ub) was investigated in a top–down approach by means of high-resolution electrospray ionization mass spectrometry (ESI-MS) using diverse tandem mass spectrometric (MS/MS) techniques, including collision-induced dissociation (CID), higher-energy C-trap dissociation (HCD), and electron transfer dissociation (ETD). To the best of our knowledge, this is the first time that metallodrug–protein adducts were analyzed for the metal-binding site by ETD-MS/MS, which outperformed both CID and HCD in terms of number of identified metallated peptide fragments in the mass spectra and the localization of the binding sites. Only ETD allowed the simultaneous and exact determination of Met1 and His68 residues as binding partners for oxaliplatin. CID-MS/MS experiments were carried out on orbitrap and ion cyclotron resonance (ICR)-FT mass spectrometers and both instruments yielded similar results with respect to number of metallated fragments and the localization of the binding sites. A comparison of the protein secondary structure with the intensities of peptide fragments generated by collisional activation of the [Ub + Pt-(chxn)] adduct [chxn = (1R,2R)-cyclohexanediamine] revealed a correlation with cleavages in solution phase random coil areas, indicating that the N-terminal β-hairpin and α-helix structures are retained in the gas phase.

Figure

CID, HCD and ETD were used to determine the binding site of the anticancer agent oxaliplatin on ubiquitin in a top-down approach

Keywords

Anticancer metallodrugs Tandem mass spectrometry Electron transfer dissociation Oxaliplatin Ubiquitin 

Notes

Acknowledgment

The authors are indebted to the Austrian Science Fund (FWF; I496-B11), the Hochschuljubiläumsstiftung Vienna and COST D39 and CM0902. We would like to thank Dr. Yue Xuan (Thermo Scientific) and Dr. Jens Fuchser (Bruker Daltonics) for assistance during measurements on the orbitrap FT MS and FT-ICR MS instruments, respectively.

Supplementary material

216_2011_5523_MOESM1_ESM.pdf (598 kb)
Specifications on the detected platinated peptide fragments including accurate mass, exact mass, mass accuracy, relative abundance, resolution, and number. (PDF 597 kb)

References

  1. 1.
    Barry MA, Behnke CA, Eastman A (1990) Activation of programmed cell-death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 40:2353–2362CrossRefGoogle Scholar
  2. 2.
    Ivanov AI, Christodoulou J, Parkinson JA, Barnham KJ, Tucker A, Woodrow J, Sadler PJ (1998) Cisplatin binding sites on human albumin. J Biol Chem 273:14721–14730CrossRefGoogle Scholar
  3. 3.
    Groessl M, Zava O, Dyson PJ (2011) Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin. Metallomics 3:591–599CrossRefGoogle Scholar
  4. 4.
    Lokich J, Anderson N (1998) Carboplatin versus cisplatin in solid tumors: an analysis of the literature. Ann Oncol 9:13–21CrossRefGoogle Scholar
  5. 5.
    Allardyce CS, Dyson PJ, Coffey J, Johnson N (2002) Determination of drug binding sites to proteins by electrospray ionisation mass spectrometry: the interaction of cisplatin with transferrin. Rapid Commun Mass Spectrom 16:933–935CrossRefGoogle Scholar
  6. 6.
    Calderone V, Casini A, Mangani S, Messori L, Orioli PL (2006) Structural investigation of cisplatin–protein interactions: selective platination of His19 in a cuprozinc superoxide dismutase. Angew Chem Int Ed Engl 45:1267–1269CrossRefGoogle Scholar
  7. 7.
    Casini A, Mastrobuoni G, Temperini C, Gabbiani C, Francese S, Moneti G, Supuran CT, Scozzafava A, Messori L (2007) ESI mass spectrometry and X-ray diffraction studies of adducts between anticancer platinum drugs and hen egg white lysozyme. Chem Commun (2):156–158.Google Scholar
  8. 8.
    Groessl M, Terenghi M, Casini A, Elviri L, Lobinski R, Dyson PJ (2010) Reactivity of anticancer metallodrugs with serum proteins: new insights from size exclusion chromatography-ICP-MS and ESI-MS. J Anal At Spectrom 25:305–313CrossRefGoogle Scholar
  9. 9.
    Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem Rev 106:2224–2248CrossRefGoogle Scholar
  10. 10.
    Sun X, Tsang C-N, Sun H (2009) Identification and characterization of metallodrug binding proteins by (metallo)proteomics. Metallomics 1:25–31CrossRefGoogle Scholar
  11. 11.
    Hartinger CG, Ang WH, Casini A, Messori L, Keppler BK, Dyson PJ (2007) Mass spectrometric analysis of ubiquitin-platinum interactions of leading anticancer drugs: MALDI versus ESI. J Anal At Spectrom 22:960–967CrossRefGoogle Scholar
  12. 12.
    Hartinger CG, Casini A, Duhot C, Tsybin YO, Messori L, Dyson PJ (2008) Stability of an organometallic ruthenium-ubiquitin adduct in the presence of glutathione: relevance to antitumor activity. J Inorg Biochem 102:2136–2141CrossRefGoogle Scholar
  13. 13.
    Ang WH, Parker LJ, De Luca A, Juillerat-Jeanneret L, Morton CJ, Lo Bello M, Parker MW, Dyson PJ (2009) Rational design of an organometallic glutathione transferase inhibitor. Angew Chem Int Ed 48:3854–3857CrossRefGoogle Scholar
  14. 14.
    Egger AE, Hartinger CG, Renfrew AK, Dyson PJ (2010) Metabolization of [Ru(η6-C6H5CF3)(pta)Cl2]: a cytotoxic RAPTA-type complex with a strongly electron withdrawing arene ligand. J Biol Inorg Chem 15:919–927CrossRefGoogle Scholar
  15. 15.
    Allardyce CS, Dyson PJ, Abou-Shakra FR, Birtwistle H, Coffey J (2001) Inductively coupled plasma mass spectrometry to identify protein drug targets from whole cell systems. Chem Commun 2708–2709.Google Scholar
  16. 16.
    Scharwitz MA, Ott I, Geldmacher Y, Gust R, Sheldrick WS (2008) Cytotoxic half-sandwich rhodium(III) complexes: polypyridyl ligand influence on their DNA binding properties and cellular uptake. J Organomet Chem 693:2299–2309CrossRefGoogle Scholar
  17. 17.
    Timerbaev AR, Aleksenko KS, Polec-Pawlak K, Ruzik R, Semenova O, Hartinger CG, Oszwaldowski S, Galanski M, Jarosz M, Keppler BK (2004) Platinum metallodrug-protein binding studies by capillary electrophoresis-inductively coupled plasma-mass spectrometry: characterization of interactions between Pt(II) complexes and human serum albumin. Electrophoresis 25:1988–1995CrossRefGoogle Scholar
  18. 18.
    Will J, Wolters DA, Sheldrick WS (2008) Characterisation of cisplatin binding sites in human serum proteins using hyphenated multidimensional liquid chromatography and ESI tandem mass spectrometry. ChemMedChem 3:1696–1707CrossRefGoogle Scholar
  19. 19.
    Najajreh Y, Shulman TP, Moshel O, Farrell N, Gibson D (2003) Ligand effects on the binding of cis- and trans-[PtCl(2)Am1Am2] to proteins. J Biol Inorg Chem 8:167–175CrossRefGoogle Scholar
  20. 20.
    Khalaila I, Allardyce CS, Verma CS, Dyson PJ (2005) A mass spectrometric and molecular modelling study of cisplatin binding to transferrin. Chembiochem 6:1788–1795CrossRefGoogle Scholar
  21. 21.
    Williams JP, Brown JM, Campuzano I, Sadler PJ (2010) Identifying drug metallation sites on peptides using electron transfer dissociation (ETD), collision induced dissociation (CID) and ion mobility-mass spectrometry (IM-MS). Chem Commun 46:5458–5460CrossRefGoogle Scholar
  22. 22.
    Groessl M, Tsybin YO, Hartinger CG, Keppler BK, Dyson PJ (2010) Ruthenium versus platinum: interactions of anticancer metallodrugs with duplex oligonucleotides characterised by electrospray ionisation mass spectrometry. J Biol Inorg Chem 15:677–688CrossRefGoogle Scholar
  23. 23.
    Hartinger CG, Tsybin YO, Fuchser J, Dyson PJ (2008) Characterization of platinum anticancer drug protein-binding sites using a top–down mass spectrometric approach. Inorg Chem 47:17–19CrossRefGoogle Scholar
  24. 24.
    Williams JP, Phillips HIA, Campuzano I, Sadler PJ (2010) Shape changes induced by N-terminal platination of ubiquitin by cisplatin. J Am Soc Mass Spectrom 21:1097–1106CrossRefGoogle Scholar
  25. 25.
    Casini A, Guerri A, Gabbiani C, Messori L (2008) Biophysical characterisation of adducts formed between anticancer metallodrugs and selected proteins: new insights from X-ray diffraction and mass spectrometry studies. J Inorg Biochem 102:995–1006CrossRefGoogle Scholar
  26. 26.
    Krivos KL, Limbach PA (2010) Sequence analysis of peptide:oligonucleotide heteroconjugates by electron capture dissociation and electron transfer dissociation. J Am Soc Mass Spectrom 21:1387–1397CrossRefGoogle Scholar
  27. 27.
    van der Rest G, He F, Emmett MR, Marshall AG, Gaskell SJ (2001) Gas-phase cleavage of PTC-derivatized electrosprayed tryptic peptides in an FT-ICR trapped-ion cell: mass-based protein identification without liquid chromatographic separation. J Am Soc Mass Spectrom 12:288–295CrossRefGoogle Scholar
  28. 28.
    Han XM, Aslanian A, Yates JR (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490CrossRefGoogle Scholar
  29. 29.
    Zhao T, King FL (2011) Mass-spectrometric characterization of cisplatin binding sites on native and denatured ubiquitin. J Biol Inorg Chem 16:633–639CrossRefGoogle Scholar
  30. 30.
    Kelleher NL (2004) Top–down proteomics. Anal Chem 76:196a–203aCrossRefGoogle Scholar
  31. 31.
    Yin S, Loo JA (2010) Elucidating the site of protein-ATP binding by top–down mass spectrometry. J Am Soc Mass Spectrom 21:899–907CrossRefGoogle Scholar
  32. 32.
    Moreno-Gordaliza E, Canas B, Palacios MA, Gomez-Gomez MM (2009) Top–down mass spectrometric approach for the full characterization of insulin–cisplatin adducts. Anal Chem 81:3507–3516CrossRefGoogle Scholar
  33. 33.
    Papayannopoulos IA (1995) The interpretation of collision-induced dissociation tandem mass-spectra of peptides. Mass Spectrom Rev 14:49–73CrossRefGoogle Scholar
  34. 34.
    Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4:709–712CrossRefGoogle Scholar
  35. 35.
    Laskin J, Futrell JH (2005) Activation of large ions in FT-ICR mass spectrometry. Mass Spectrom Rev 24:135–167CrossRefGoogle Scholar
  36. 36.
    Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz J, Hunt DF (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822Google Scholar
  37. 37.
    Nielsen ML, Savitski MM, Zubarev RA (2005) Improving protein identification using complementary fragmentation techniques in Fourier transform mass spectrometry. Mol Cell Proteomics 4:835–845CrossRefGoogle Scholar
  38. 38.
    Syrstad EA, Turecek F (2005) Toward a general mechanism of electron capture dissociation. J Am Soc Mass Spectrom 16:208–224CrossRefGoogle Scholar
  39. 39.
    Zubarev RA, Zubarev AR, Savitski MM (2008) Electron capture/transfer versus collisionally activated/induced dissociations: solo or duet? J Am Soc Mass Spectrom 19:753–761CrossRefGoogle Scholar
  40. 40.
    Peleg-Shulman T, Gibson D (2001) Cisplatin–protein adducts are efficiently removed by glutathione but not by 5′-guanosine monophosphate. J Am Chem Soc 123:3171–3172CrossRefGoogle Scholar
  41. 41.
    Hartinger CG, Schluga P, Galanski M, Baumgartner C, Timerbaev AR, Keppler BK (2003) Tumor-inhibiting platinum(II) complexes with aminoalcohol ligands: comparison of the mode of action by capillary electrophoresis and electrospray ionization-mass spectrometry. Electrophoresis 24:2038–2044CrossRefGoogle Scholar
  42. 42.
    Galanski M, Baumgartner C, Meelich K, Arion VB, Fremuth M, Jakupec MA, Schluga P, Hartinger CG, Von Keyserlingk NG, Keppler BK (2004) Synthesis, crystal structure and pH dependent cytotoxicity of (SP-4-2)-bis(2-aminoethanolato-κ2 N, O)platinum(II)—a representative of novel pH sensitive anticancer platinum complexes. Inorg Chim Acta 357:3237–3244CrossRefGoogle Scholar
  43. 43.
    Jerremalm E, Videhult P, Alvelius G, Griffiths WJ, Bergman T, Eksborg S, Ehrsson H (2002) Alkaline hydrolysis of oxaliplatin—isolation and identification of the oxalato monodentate intermediate. J Pharm Sci 91:2116–2121CrossRefGoogle Scholar
  44. 44.
    Simons J (2010) Mechanisms for S–S and N–C–alpha bond cleavage in peptide ECD and ETD mass spectrometry. Chem Phys Lett 484:81–95CrossRefGoogle Scholar
  45. 45.
    Briggs MS, Roder H (1992) Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc Natl Acad Sci 89:2017–2021CrossRefGoogle Scholar
  46. 46.
    Pan J, Han J, Borchers CH, Konermann L (2008) Electron capture dissociation of electrosprayed protein ions for spatially resolved hydrogen exchange measurements. J Am Chem Soc 130:11574–11575CrossRefGoogle Scholar
  47. 47.
    Mendoza VL, Vachet RW (2009) Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom Rev 28:785–815CrossRefGoogle Scholar
  48. 48.
    Robinson EW, Leib RD, Williams ER (2006) The role of conformation on electron capture dissociation of ubiquitin. J Am Soc Mass Spectrom 17:1469–1479CrossRefGoogle Scholar
  49. 49.
    Konermann L, Douglas DJ (1997) Acid-induced unfolding of cytochrome c at different methanol concentrations: electrospray ionization mass spectrometry specifically monitors changes in the tertiary structure. Biochemistry 36:12296–12302CrossRefGoogle Scholar
  50. 50.
    Konermann L, Douglas DJ (1998) Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: Distinguishing two-state from multi-state transitions. Rapid Commun Mass Spectrom 12:435–442CrossRefGoogle Scholar
  51. 51.
    Breuker K, Oh HB, Horn DM, Cerda BA, McLafferty FW (2002) Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J Am Chem Soc 124:6407–6420CrossRefGoogle Scholar
  52. 52.
    Oh H, Breuker K, Sze SK, Ge Y, Carpenter BK, McLafferty FW (2002) Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc Natl Acad Sci 99:15863–15868CrossRefGoogle Scholar
  53. 53.
    Ben Hamidane H, He H, Tsybin OY, Emmett MR, Hendrickson CL, Marshall AG, Tsybin YO (2009) Periodic sequence distribution of product ion abundances in electron capture dissociation of amphipathic peptides and proteins. J Am Soc Mass Spectrom 20:1182–1192CrossRefGoogle Scholar
  54. 54.
    Breuker K, Bruschweiler S, Tollinger M (2011) Electrostatic stabilization of a native protein structure in the gas phase. Angew Chem Int Ed Engl 50:873–877CrossRefGoogle Scholar
  55. 55.
    Zhang Z, Bordas-Nagy J (2006) Peptide conformation in gas phase probed by collision-induced dissociation and its correlation to conformation in condensed phases. J Am Soc Mass Spectrom 17:786–794CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Samuel M. Meier
    • 1
    • 2
  • Yury O. Tsybin
    • 3
  • Paul J. Dyson
    • 3
  • Bernhard K. Keppler
    • 1
    • 2
  • Christian G. Hartinger
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Inorganic ChemistryUniversity of ViennaViennaAustria
  2. 2.Research Platform “Translational Cancer Therapy Research”University of ViennaViennaAustria
  3. 3.Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations