Analytical and Bioanalytical Chemistry

, Volume 402, Issue 2, pp 983–987 | Cite as

Raman-spectroscopy-based noninvasive microanalysis of native lignin structure

  • Pradeep N. Perera
  • Martin Schmidt
  • Vincent L. Chiang
  • P. James Schuck
  • Paul D. Adams
Technical Note

Abstract

A new robust, noninvasive, Raman microspectroscopic method is introduced to analyze the structure of native lignin. Lignin spectra of poplar, Arabidopsis, and Miscanthus were recovered and structural differences were unambiguously detected. Compositional analysis of 4-coumarate-CoA ligase suppressed transgenic poplar showed that the syringyl-to-guaiacyl ratio decreased by 35% upon the mutation. A cell-specific compositional analysis of basal stems of Arabidopsis showed similar distributions of S and G monolignols in xylary fiber cells and interfascicular cells.

Figure

Estimated Raman spectra of lignin of Arabidopsis (blue), poplar (red), and Miscanthus (black) with spectral entropy minimization. Raman peaks of Guaiacial (G), Syringyl (S) and Hydroxyphenyl (H) units are indicated.

Keywords

Lignin Entropy minimization Chemometrics Cell wall Monolignol Raman 

Supplementary material

216_2011_5518_MOESM1_ESM.pdf (747 kb)
ESM 1(PDF 746 kb)

References

  1. 1.
    Chen F, Dixon RA (2007) Nat Biotechnol 25(7):759–761. doi:10.1038/nbt1316 CrossRefGoogle Scholar
  2. 2.
    Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Nat Biotechnol 17(8):808–812CrossRefGoogle Scholar
  3. 3.
    Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD (2009) Plant Physiol 150(2):621–635. doi:10.1104/pp.109.137059 CrossRefGoogle Scholar
  4. 4.
    Iiyama K, Wallis AFA (1990) J Sci Food Agric 51(2):145–161CrossRefGoogle Scholar
  5. 5.
    Ralph J, Hatfield RD (1991) J Agric Food Chem 39(8):1426–1437CrossRefGoogle Scholar
  6. 6.
    Lapierre C, Monties B, Rolando C (1986) Holzforschung 40(2):113–118CrossRefGoogle Scholar
  7. 7.
    Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara B, Kiri LT (2007) Proc Natl Acad Sci USA 104(28):11856–11861. doi:10.1073/pnas.0701428104 CrossRefGoogle Scholar
  8. 8.
    Anterola AM, Lewis NG (2002) Phytochemistry 61(3):221–294CrossRefGoogle Scholar
  9. 9.
    Perera PN, Schmidt M, Schuck PJ, Adams PD (2011) Anal Chim Acta 702(2):172–177. doi:10.1016/j.aca.2011.06.021 CrossRefGoogle Scholar
  10. 10.
    Widjaja E, Garland M (2008) Anal Chem 80(3):729–733CrossRefGoogle Scholar
  11. 11.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Science 220(4598):671–680CrossRefGoogle Scholar
  12. 12.
    Schmidt M, Schwartzberg AM, Perera PN, Weber-Bargioni A, Carroll A, Sarkar P, Bosneaga E, Urban JJ, Song J, Balakshin MY, Capanema EA, Auer M, Adams PD, Chiang VL, Schuck PJ (2009) Planta 230(3):589–597. doi:10.1007/s00425-009-0963-x CrossRefGoogle Scholar
  13. 13.
    Gierlinger N, Schwanninger M (2006) Plant Physiol 140(4):1246–1254. doi:10.1104/pp.105.066993 CrossRefGoogle Scholar
  14. 14.
    Agarwal UP (2006) Planta 224(5):1141–1153. doi:10.1007/s00425-006-0295-z CrossRefGoogle Scholar
  15. 15.
    Sun L, Simmons BA, Singh S (2011) Biotechnol Bioeng 108(2):286–295. doi:10.1002/bit.22931 CrossRefGoogle Scholar
  16. 16.
    Agarwal UP, McSweeny JD, Ralph SA (2011) J Wood Chem Technol 31:324–344CrossRefGoogle Scholar
  17. 17.
    Villaverde JJ, Li JB, Ek M, Ligero P, de Vega A (2009) J Agric Food Chem 57(14):6262–6270. doi:10.1021/jf900483t CrossRefGoogle Scholar
  18. 18.
    Chu LQ, Masyuko R, Sweedler JV, Bohn PW (2010) Bioresour Technol 101(13):4919–4925. doi:10.1016/j.biortech.2009.10.096 CrossRefGoogle Scholar
  19. 19.
    Vanholme R, Ralph J, Akiyama T, Lu FC, Pazo JR, Kim H, Christensen JH, Van Reusel B, Storme V, De Rycke R, Rohde A, Morreel K, Boerjan W (2010) Plant J 64(6):885–897. doi:10.1111/j.1365-313X.2010.04353.x CrossRefGoogle Scholar
  20. 20.
    Ruel K, Berrio-Sierra J, Derikvand MM, Pollet B, Thevenin J, Lapierre C, Jouanin L, Joseleau JP (2009) New Phytol 184(1):99–113. doi:10.1111/j.1469-8137.2009.02951.x CrossRefGoogle Scholar
  21. 21.
    Leple JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefebvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunneras S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Plant Cell 19(11):3669–3691. doi:10.1105/tpc.107.054148 CrossRefGoogle Scholar
  22. 22.
    Patten AM, Jourdes M, Cardenas CL, Laskar DD, Nakazawa Y, Chung BY, Franceschi VR, Davin LB, Lewis NG (2010) Mol Biosyst 6(3):499–515. doi:10.1039/b819206e CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Pradeep N. Perera
    • 1
  • Martin Schmidt
    • 1
  • Vincent L. Chiang
    • 2
  • P. James Schuck
    • 3
  • Paul D. Adams
    • 4
    • 5
  1. 1.Energy Biosciences InstituteUniversity of CaliforniaBerkeleyUSA
  2. 2.Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural ResourcesNorth Carolina State UniversityRaleighUSA
  3. 3.Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.Department of BioengineeringUniversity of California BerkeleyBerkeleyUSA

Personalised recommendations