Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Determination of moisture content of single-wall carbon nanotubes


Several techniques were evaluated for the establishment of reliable water/moisture content of single-wall carbon nanotubes. Karl Fischer titration (KF) provides a direct measure of the water content and was used for benchmarking against results obtained by conventional oven drying, desiccation over anhydrous magnesium perchlorate as well as by thermogravimetry and prompt gamma-ray activation analysis. Agreement amongst results was satisfactory with the exception of thermogravimetry, although care must be taken with oven drying as it is possible to register mass gain after an initial moisture loss if prolonged drying time or elevated temperatures (120 °C) are used. Thermogravimetric data were precise but a bias was evident that could be accounted for by considering the non-selective loss of mass as volatile carbonaceous components. Simple drying over anhydrous magnesium perchlorate for a minimum period of 8–10 days is recommended if KF is not available for this measurement.

Drying over desiccants such as anhydrous Mg(ClO4)2 provides a convenient and inexpensive means of establishing a reproducible moisture content for SWCNT material

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    ISO TC 229 (2008) Nanotechnologies. ISO/TS 27687. Available at http://www.iso.org/iso/iso_technical_committee?commid=381983

  2. 2.

    Hassellov M, Readman JW, Ranville JF, Tiede K (2008) Ecotoxicol 17:344–361

  3. 3.

    Lead JR (2010) Environ Chem 7:1–2

  4. 4.


  5. 5.

    Iijima S (1991) Nat Lond 354:56–58

  6. 6.

    Zeisler R, Paul RL, Oflaz Spatz R, Yu LL, Mann JL, Kelly WR, Lang BE, Leigh SD, Fagan J (2011) Anal Bioanal Chem 399:509–517

  7. 7.


  8. 8.

    Freiman S, Hooker S, Migler K, Arepalli S (2008) NIST special publication no. 960-19, U.S. Department of Commerce

  9. 9.

    Decker JE, Hight Walker AR, Bosnick K, Clifford CA, Dai L, Fagan J, Hooker S, Jakubek ZJ, Kingston C, Makar J, Mansfield E, Postek MT, Simard B, Sturgeon RE, Wise S, Vladar AE, Yang L, Zeisler R (2009) Metrologia 46:682–692

  10. 10.

    Belin T, Epron F (2005) Mater Sci Eng B119:105–118

  11. 11.

    Ruckold S, Grobecker KH, Isengard H-D (2001) Fresenius J Anal Chem 370:189–193

  12. 12.

    Naguib N, Ye H, Gogotsi Y, Yazicioglu AG, Megaridis CM, Yoshimura M (2004) Nano Lett 4:2223–2243

  13. 13.

    Strioloa A, Chialvo AA, Cummings PT, Gubbins KE (2006) J Chem Phys 124:074710–074711

  14. 14.

    Wang H-J, Xi X-K, Kleinhammes A, Wu Y (2008) Science 322:80–83

  15. 15.

    Ellison MD, Good AP, Kinnaman CS, Padgett NE (2005) J Phys Chem B 109:10640

  16. 16.

    Vassileva E, Quetel CR (2008) Food Chem 106:1485–1490

  17. 17.

    Yazgan S, Bernreuther A, Ulberth F, Isengard H-D (2006) Food Chem 96:411–417

  18. 18.

    Mann JL, Kelly WR, MacDonald BS (2002) Anal Chem 74:3585–3591

  19. 19.

    Ruckold S, Grobecker KH, Isengard H-D (2001) Food Control 12:401–407

  20. 20.

    Ruchold S, Grobecker KH, Isengard H-D (2001) Fresenius J Anal Chem 370:189–193

  21. 21.

    American Society for Testing and Materials (D3173-03) (2008) Standard test method for moisture in the analysis sample of coal and coke”. ASTM International, Barr Harbor, PA

  22. 22.

    International Organization for Standardization, ISO 579:1990(E), “Coke—determination of moisture content”, Geneva, 1999

  23. 23.

    Isengard H-D (2001) Fresenius J Anal Chem 370:189–193

  24. 24.

    Kim KS, Cota-Sanchez G, Kingston CT, Imris M, Simard B, Soucy G (2007) J Phys D 40:2375–2387

  25. 25.

    Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna AJ (2002) Nanopart Res 4:131–136

  26. 26.

    Schmitt K, Isengard H-D (1998) Fresenius J Anal Chem 360:465–469

  27. 27.

    Paul RL, Lindstrom RM, Heald AE (1997) J Radioanal Nucl Chem 215:63–68

  28. 28.

    Zeisler R, Oflaz R, Paul RL, Fagan JA (2011) J Radioanal Nucl Chem, doi:10.1007/s10967-011-1290-9

  29. 29.

    Isengard H-D (1995) Trends Food Sci Technol 6:155–162

  30. 30.

    Arepalli S, Nikolaev P, Gorelik O, Hadjiev VG, Holmes W, Files B, Yowell L (2004) Carbon 42:1783–1791

Download references


The authors thank G. Robertson of NRCC’s Institute for Chemical Process and Environmental Technology (ICPET) for making available the TGA-FT-IR apparatus used in this study, F. Toll (ICPET) for performing the carbon content measurements and P. Rasmussen (Health Canada) for measurements of the SWCNT agglomerate particle size.

Author information

Correspondence to Ralph E. Sturgeon.

Additional information

Published in the 10th Anniversary Issue.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sturgeon, R.E., Lam, J.W., Windust, A. et al. Determination of moisture content of single-wall carbon nanotubes. Anal Bioanal Chem 402, 429–438 (2012). https://doi.org/10.1007/s00216-011-5509-y

Download citation


  • Single-wall carbon nanotubes
  • Moisture determination
  • Oven drying
  • Desiccator drying
  • Karl Fischer titration
  • Prompt gamma-ray activation analysis