Analytical and Bioanalytical Chemistry

, Volume 402, Issue 2, pp 975–982 | Cite as

On the stability of the bioactive flavonoids quercetin and luteolin under oxygen-free conditions

  • Šárka Ramešová
  • Romana Sokolová
  • Ilaria Degano
  • Jana Bulíčková
  • Ján Žabka
  • Miroslav Gál
Original Paper

Abstract

The natural flavonoid compounds quercetin (3,3′,4′,5,7-pentahydroxyflavone) and luteolin (3′,4′,5,7-tetrahydroxyflavone) are important bioactive compounds with antioxidative, anti-allergic, and anti-inflammatory properties. However, both are unstable when exposed to atmospheric oxygen, which causes degradation and complicates their analytical determinations. The oxidative change of these flavonoids was observed and followed by UV–visible spectrophotometry, both in aqueous and ethanolic solutions. The distribution of the degradation products in aqueous media was monitored by LC–MS and LC–DAD analysis. The amounts of oxidative reaction products increase with the exposure time. The oxidative degradation reduces the pharmacological efficiency of these antioxidants and renders analytical determination inaccurate. The oxidative changes in flavonoid test solutions can explain the inconsistent dissociation constants reported in the literature. Dissociation constants of quercetin and luteolin were determined both by alkalimetric titration and by UV–visible spectrophotometry under deaerated conditions. The values pK1 = 5.87 ± 0.14 and pK2 = 8.48 ± 0.09 for quercetin, and pK1 = 5.99 ± 0.32 and pK2 = 8.40 ± 0.42 for luteolin were found.

Figure

The change of absorption spectra of quercetin during the exposure to the air oxygen

Keywords

Flavonoids Antioxidants Stability Oxidation Dissociation constant 

Supplementary material

216_2011_5504_MOESM1_ESM.pdf (151 kb)
ESM 1(PDF 150 kb)

References

  1. 1.
    Hollman P, Arts IJ (2000) Flavonols, flavones and flavanols - nature, occurrence and dietary burden. Sci Food Agric 80(7):1081–1093CrossRefGoogle Scholar
  2. 2.
    Matsuda H, Morikawa T, Ando S, Togucida I, Yoshikawa M (2003) Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorg Med Chem 11(9):1995–2000CrossRefGoogle Scholar
  3. 3.
    Kandaswami C, Perkins E, Soloniuk DS, Drzewiecki G, JrE M (1991) Antiproliferative effects of citrus flavonoids on a human squamous-cell carcinoma invitro. Cancer Lett 56(2):147–152CrossRefGoogle Scholar
  4. 4.
    Dadáková E, Procházková E, Křížek M (2001) Application of micellar electrokinetic capillary chromatography for quantitative analysis of quercetin in plant materials. Electrophoresis 22(8):1573–1578CrossRefGoogle Scholar
  5. 5.
    Kobayashi T, Nakata T, Kuzumaki T (2002) Effect of flavonoids on cell cycle progression in prostate cancer cells. Cancer Lett 176(1):17–23CrossRefGoogle Scholar
  6. 6.
    Hofenk de Graaf J (2004) The Colourful Past, Origins, Chemistry and Identification of Natural Dyestuffs. Abegg-Stiftung and Archetype Publications LtdGoogle Scholar
  7. 7.
    Wouters J, Rosario-Chirinos N (1992) Dye analysis of pre-columbian peruvian textiles with high-performace liquid chromatography and diode-array detection. J Am Inst Conservation 31:237–255CrossRefGoogle Scholar
  8. 8.
    Schweppe H (1992) Handbuch der Naturfarbstoffe; Vorkommen, Verlagsgesellschaft. Lech, LandebergGoogle Scholar
  9. 9.
    Ferreira ESB, Quye A, McNab H, Hulme AN (2002) Photo-oxidation products of quercetin and Morin as markers for the characterisation of natural flavonoid yellow dyes in ancient textiles. Dyes in history and archaeology 18:63–72Google Scholar
  10. 10.
    Papouchado L, Petrie G, Adams RN (1972) Anodic-oxidation pathways of phenolic compounds 1.anodic hydroxylation reactions. J Electroanal Chem 38(2):389–395CrossRefGoogle Scholar
  11. 11.
    Ryan D, Yueh A, Chen W-Y (1980) The electrochemical oxidation of substituted catechols. J Electrochem Soc 127(7):1489–1495CrossRefGoogle Scholar
  12. 12.
    Bailey SI, Ritchie IM, Hewgill FR (1983) The construction and use of potential-pH diagrams in organic oxidation-reduction reactions. J Chem Soc Perkin Trans II 5:645–652CrossRefGoogle Scholar
  13. 13.
    Laviron E (1984) Electrochemical reactions with protonations at equilibrium 10. The kinetics of the para-benzoquinone hydroquinone couple on a platinum-electrode. J Electroanal Chem 164(2):213–227CrossRefGoogle Scholar
  14. 14.
    Sokolová R, Degano I, Hromadová M, Bulíčková J, Gál M, Valášek M (2010) Oxidation pathways of natural dye hematoxylin in aqueous solution. Collect Czech Chem Commun 75(11):1097–1114CrossRefGoogle Scholar
  15. 15.
    Costentin C, Louault C, Robert M, Savéant J-M (2008) Evidence for concerted proton-electron transfer in the electrochemical oxidation of phenols with water as proton acceptor. Tri-tert-butylphenol J Am Chem Soc 130(47):15817–15819Google Scholar
  16. 16.
    Musialik M, Kuzmicz R, Pawlowski TS, Litwinienko G (2009) Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J Org Chem 74(7):2699–2709CrossRefGoogle Scholar
  17. 17.
    Jacq J (1971) Squares scheme – establishment and discussion of general equation for intensity – potential curve in stationary flow and convective diffusion. J Electroanal Chem Interfacial Electrochem 29(1):149–180Google Scholar
  18. 18.
    Lalor GC (1962) Studies on haematoxylin and haematein, the colouring principles of logwood III fading of haematein in aqueous acidic solutions. J Soc Dyers Colour 78(11):549–551CrossRefGoogle Scholar
  19. 19.
    Bettinger Ch, Zimmermann HW (1991) New investigations on hematoxylin, hematein and hematein-aluminum complexes I. spectroscopic and physicochemical properties of hematoxylin and hematein. Histochemistry 95(3):279–288CrossRefGoogle Scholar
  20. 20.
    Lalor GC, Martin SL (1959) Studies on haematoxylin and haematein the colouring principles of logwood 2. behaviour in aqueous solutions at varying pH, and the pK values. J Soc Dyers Colour 75(11):517–521CrossRefGoogle Scholar
  21. 21.
    Zheng Y, Haworth IS, Zuo Z, Chow MSS, Chow AHL (2005) Physicochemical and structural characterization of quercetin-beta-cyclodextrin complexes. J Pharm Sci 94(5):1079–1089CrossRefGoogle Scholar
  22. 22.
    Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) Flavonoids as antioxidants. J Am Chem Soc 116(11):4846–4851CrossRefGoogle Scholar
  23. 23.
    Escandar GM, Sala LF (1991) Complexing behavior or rutin and quercetin. Can J Chem 69(12):1994–2001CrossRefGoogle Scholar
  24. 24.
    Dangles O, Dufour C, Bret S (1999) Flavonol-serum albumin complexation. Two-electron oxidation of flavonols and their complexes with serum albumin. J Chem Soc Perkin Trans 2(4):737–744Google Scholar
  25. 25.
    Zenkevich IG, Guschina SV (2010) Determination of dissociation constants of species oxidizable in aqueous solution by Air oxygen on an example of quercetin. J Anal Chem 65(4):371–375CrossRefGoogle Scholar
  26. 26.
    Brett AMO, Ghica M-E (2003) Electrochemical oxidation of quercetin. Electroanalysis 15(22):1745–1750CrossRefGoogle Scholar
  27. 27.
    Makris DP, Rossiter JT (2002) Hydroxyl free radical-mediated oxidative degradation of quercetin and Morin: a preliminary investigation. J Food Composition Anal 15(1):103–113CrossRefGoogle Scholar
  28. 28.
    Tournaire C, Hocquaux M, Beck I, Oliveros E, Maurette M-T (1994) Antioxidant activity of flavonoids – reactivity with potassium superoxide in the heterogeneous phase. Tetrahedron 50(31):9303–9314CrossRefGoogle Scholar
  29. 29.
    Jungbluth G, Ruhling I, Ternes W (2000) Oxidation of flavonols with Cu(II), Fe(II) and Fe(III) in aqueous media. Chem Soc Perkin Trans 2(9):1946–1952CrossRefGoogle Scholar
  30. 30.
    Jorgensen LV, Cornett C, Justesen U, Skibsted LH, Dragsted LO (1998) Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring. Free Rad Res 29(4):339–350CrossRefGoogle Scholar
  31. 31.
    Timbola AK, De Souza CD, Giacomelli C, Spinelli A, Braz J (2006) Electrochemical oxidation of quercetin in hydro-alcoholic solution. Chem Soc 17(1):139–148Google Scholar
  32. 32.
    Sokolová R, Degano I, Ramešová Š, Bulíčková J, Hromadová M, Gál M, Fiedler J, Valášek M (2011) The oxidation mechanism of the antioxidant quercetin in nonaqueous media. Electrochim Acta 56(21):7421–7427CrossRefGoogle Scholar
  33. 33.
    Hendrickson HP, Kaufman AD, Lunte CE (1994) Electrochemistry of catechol-containing flavonoids. J Pharm Biomed Anal 12(3):325–334CrossRefGoogle Scholar
  34. 34.
    Zenkevich IG, Eshchenko AY, Makarova SV, Vitenberg AG, Dobryakov YG, Utsal VA (2007) Identification of the products of oxidation of quercetin by Air oxygen at ambient temperature. Molecules 12(3):654–672CrossRefGoogle Scholar
  35. 35.
    Zhou A, Kikandi S, Sadik OA (2007) Electrochemical degradation of quercetin: Isolation and structural elucidation of the degradation products. Electrochem Commun 9(9):2246–2255CrossRefGoogle Scholar
  36. 36.
    Lei R, Xu X, Yu F, Li N, Liu HW, Li K (2008) A method to determine quercetin by enhanced luminol electrogenerated chemiluminescence (ECL) and quercetin autoxidation. Talanta 75(4):1068–1074CrossRefGoogle Scholar
  37. 37.
    Surowiec I, Szostek B, Trojanowicz M (2007) HPLC–MS of anthraquinoids, flavonoids, and their degradation products in analysis of natural dyes in archeological objects. J Sep Sci 30(13):2070–2079CrossRefGoogle Scholar
  38. 38.
    Dangles O, Fargeix G, Dufour C (1999) One-electron oxidation of quercetin and quercetin derivatives in protic and non protic media. J Chem Soc Perkin Trans 2(7):1387–1395Google Scholar
  39. 39.
    Bettinger C, Zimmermann HW (1991) New investigations on hematoxylin, hematein and hematein–aluminium complexes. Histochemistry 95(3):279–288CrossRefGoogle Scholar
  40. 40.
    Pérez R, Galvín RM, Mellado JMR (2002) Ultraviolet absorption spectra and dissociation constants of diamino-1,3,5-triazines. Collect Czech Chem Commun 67(4):429–438CrossRefGoogle Scholar
  41. 41.
    Daffy LM, Prasanna de Silva A, Gunaratne HQN, Huber Ch, Lynch PLM, Werner T, Wolfbeis OS (1998) Arenedicarboximide building blocks for fluorescent photoinduced electron transfer pH sensors applicable with different media and communication wavelengths. Chem Eur J 4(9):1810–1815CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O'Neill DP, DiStasio RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 8:3172–3191CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Šárka Ramešová
    • 1
    • 2
  • Romana Sokolová
    • 1
  • Ilaria Degano
    • 3
  • Jana Bulíčková
    • 1
  • Ján Žabka
    • 1
  • Miroslav Gál
    • 1
  1. 1.J. Heyrovský Institute of Physical Chemistryv.v.i., Academy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Department of Analytical ChemistryCharles University in PraguePragueCzech Republic
  3. 3.Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly

Personalised recommendations