Analytical and Bioanalytical Chemistry

, Volume 402, Issue 8, pp 2565–2576 | Cite as

Tunable fragmentation of organic molecules in laser ablation glow discharge time-of-flight mass spectrometry

  • G. Lotito
  • D. Günther
Original Paper


A DC-pulsed glow discharge (GD) has distinct temporal regimes which are characterized by “softer” or “harder” ionization of analytes introduced into the discharge. It is thus possible to obtain both molecular weight and structural fragment information from the same spectra. In order to extend the capabilities of this technique a laser ablation (LA) sampling system was coupled to a DC-pulsed GD and to a time-of-flight (TOF) mass spectrometer (MS) for characterizing organic samples such as oleic acid, reserpine, two different peptides, and a polymer. Both hard and soft ionization regimes were studied. These LAGD-TOFMS results were compared to matrix-assisted laser desorption ionization (MALDI) spectra using the same compounds (i.e., analytes, concentration, and matrix). It was found that LAGD offers tunable ionization and provides a reduced matrix dependence. However, the sensitivity achieved by the prototype LAGD-TOFMS was significantly lower when compared with commercially available MALDI-TOFMS instrumentation. Since LAGD-TOFMS is rather new, some technical details to increase its sensitivity are discussed.


Schematics of molecular and structural information of oleic acid molecule during the different temporal regimes of a pulsed GD.


Pulsed glow discharge MALDI Laser ablation Fragmentation Chemical speciation 



The authors would like to thank the European Community for financial support through GLADNET, a Marie Curie-RTN within the FP 6, and TOFWERK AG for providing the TOF instrument. The authors also would like to thank Dr. R. Knochenmuss for the discussion of the results, and L. Bertschi (MS service, D-CHAB) for the MALDI measurements. We also like to thank H. Longerich and two anonymous reviewers for critical and constructive comments which helped to improve the manuscript.


  1. 1.
    Krull IS (1991) Trace metal analysis and speciation. Elsevier, New YorkGoogle Scholar
  2. 2.
    Sanz-Medel A (1998) Spectrochim Acta B 53:197–211CrossRefGoogle Scholar
  3. 3.
    Ng JC, Johnson D, Imray P, Chiswell B, Moore MR (1998) Analyst 23:929–933CrossRefGoogle Scholar
  4. 4.
    Gordon BM, Jones KW (1991) In: Subramanian KS, Iyengar GV, Okamoto K (eds) Biological trace element research, ACS Symposium Serie, Vol. 445, American Chemical Society, Washington, DCGoogle Scholar
  5. 5.
    Caruso JA, Wuilloud RG, Altamirano JC, Harris WR (2006) J Toxicol Environ Health 9:41–61Google Scholar
  6. 6.
    Waddell R, Lewis C, Hang W, Hassell C, Majidi V (2005) Appl Spectrosc 40:33–69CrossRefGoogle Scholar
  7. 7.
    Cristoni S, Bernardi LR (2004) Expert Rev Proteomics 1:469–483CrossRefGoogle Scholar
  8. 8.
    Siuzdak G (1994) Proc Natl Acad Sci USA 91:11290–11297CrossRefGoogle Scholar
  9. 9.
    Ray SJ, Andrade F, Gamez G, McClenathan D, Rogers D, Schilling G, Wetzel W, Hieftje GM (2004) J Chromatogr A 1050:3–34Google Scholar
  10. 10.
    Sola-Vazquez A, Costa-Fernandez JM, Pereiro M, Sanz-Medel A (2011) Analyst 136:246–256CrossRefGoogle Scholar
  11. 11.
    Jakubowski N, Dorka R, Steers E, Tempez A (2007) J Anal Atom Spectrom 22:722–735CrossRefGoogle Scholar
  12. 12.
    Martin A, Pereiro R, Bordel N, Sanz-Medel A (2007) J Anal Atom Spectrom 22:1179–1183CrossRefGoogle Scholar
  13. 13.
    Jackson GP, Lewis CL, Doorn SK, Majidi V, King FL (2001) Spectrochim Acta B 56:2449–2464CrossRefGoogle Scholar
  14. 14.
    Yang CL, Ingeneri K, Harrison WW (1999) J Anal Atom Spectrom 14:693–698CrossRefGoogle Scholar
  15. 15.
    Pan CK, King FL (1993) J Am Soc Mass Spectrom 4:727–732CrossRefGoogle Scholar
  16. 16.
    Majidi V, Moser M, Lewis C, Hang W, King FL (2000) J Anal Atom Spectrom 15:19–25CrossRefGoogle Scholar
  17. 17.
    Steiner RE, Lewis CL, Majidi V (1999) J Anal Atom Spectrom 14:1537–1541CrossRefGoogle Scholar
  18. 18.
    Lewis CL, Moser M, Dale DE, Hang W, Hassell C, King FL, Majidi V (2003) Anal Chem 75:1983–1996CrossRefGoogle Scholar
  19. 19.
    Fliegel D, Fuhrer K, Gonin M, Günther D (2006) Anal Bioanal Chem 386:169–179CrossRefGoogle Scholar
  20. 20.
    Tarik M, Günther D (2010) J Anal Atom Spectrom 25:1416–1423CrossRefGoogle Scholar
  21. 21.
    Robertson-Honecker JN, Zhang N, Pavkovichab A, King FL (2008) J Anal Atom Spectrom 23:1508–1517CrossRefGoogle Scholar
  22. 22.
    Zhang N, King FL (2009) J Anal Atom Spectrom 24:1489–1497CrossRefGoogle Scholar
  23. 23.
    Belkin M, Olson LK, Caruso JA (1997) J Anal Atom Spectrom 12:1255–1261CrossRefGoogle Scholar
  24. 24.
    Gibeau TE, Marcus RK (2000) Anal Chem 72:3833–3840CrossRefGoogle Scholar
  25. 25.
    Dreisewerd K (2003) Chem. Rev 103:395–425Google Scholar
  26. 26.
    Knochenmuss R (2006) Analyst 131:966–986CrossRefGoogle Scholar
  27. 27.
    Tarik M, Lotito G, Whitby JA, Koch J, Fuhrer K, Gonin M, Michler J, Bolli JL, Günther D (2009) Spectrochim Acta B 64:262–270CrossRefGoogle Scholar
  28. 28.
    Hidaka H, Hanyu N, Sugano M, Kawasaki K, Yamauchi K, Katsuyama T (2007) Ann Clin Lab Sci 37:213–221Google Scholar
  29. 29.
    Kinumi T, Saisu T, Takayama M, Niwa H (2000) J Mass Spectrom 35:417–422CrossRefGoogle Scholar
  30. 30.
    Shroff R, Svatos A (2009) Rapid Commun Mass Spectrom 23:2380–2382CrossRefGoogle Scholar
  31. 31.
    Schaiberger AM, Moss JA (2008) J Am Soc Mass Spectrom 19:614–619CrossRefGoogle Scholar
  32. 32.
    Schiller J, Süss R, Fuchs B, Müller M, Petkovic M, Zschörnig O, Waschipky H (2007) Eur Biophys J 36:517–527CrossRefGoogle Scholar
  33. 33.
    NIST Chemistry WebBook. Available at Accessed 19 July 2011
  34. 34.
    Ratliff P, Harrison WW (1995) Appl Spectrosc 49:863–871CrossRefGoogle Scholar
  35. 35.
    Ratliff P, Harrison WW (1994) Spectrochim Acta B 49:1747–1757CrossRefGoogle Scholar
  36. 36.
    McCombie G, Knochenmuss R (2004) Anal Chem 76:4990–4997CrossRefGoogle Scholar
  37. 37.
    Gusev A, Wilkinson W, Proctor A, Hercules D (1995) Anal Chem 67:1034–1041CrossRefGoogle Scholar
  38. 38.
    Vorm O, Roepstorff P, Mann M (1994) Anal Chem 66:3281–3287CrossRefGoogle Scholar
  39. 39.
    Cohen S, Chait B (1996) Anal Chem 68:31–37CrossRefGoogle Scholar
  40. 40.
    Gogichaeva NV, Williams T, Alterman MA (2007) J Am Soc Mass Spectrom 18:279–284CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Laboratory of Inorganic ChemistryZurichSwitzerland

Personalised recommendations