Analytical and Bioanalytical Chemistry

, Volume 402, Issue 1, pp 405–412 | Cite as

The aromatic peroxygenase from Marasmius rutola—a new enzyme for biosensor applications

  • Aysu Yarman
  • Glenn Gröbe
  • Bettina Neumann
  • Mathias Kinne
  • Nenad Gajovic-Eichelmann
  • Ulla Wollenberger
  • Martin Hofrichter
  • René Ullrich
  • Katrin Scheibner
  • Frieder W. Scheller
Original Paper


The aromatic peroxygenase (APO; EC from the agraric basidomycete Marasmius rotula (MroAPO) immobilized at the chitosan-capped gold-nanoparticle-modified glassy carbon electrode displayed a pair of redox peaks with a midpoint potential of −278.5 mV vs. AgCl/AgCl (1 M KCl) for the Fe2+/Fe3+ redox couple of the heme-thiolate-containing protein. MroAPO oxidizes aromatic substrates such as aniline, p-aminophenol, hydroquinone, resorcinol, catechol, and paracetamol by means of hydrogen peroxide. The substrate spectrum overlaps with those of cytochrome P450s and plant peroxidases which are relevant in environmental analysis and drug monitoring. In M. rotula peroxygenase-based enzyme electrodes, the signal is generated by the reduction of electrode-active reaction products (e.g., p-benzoquinone and p-quinoneimine) with electro-enzymatic recycling of the analyte. In these enzyme electrodes, the signal reflects the conversion of all substrates thus representing an overall parameter in complex media. The performance of these sensors and their further development are discussed.


Unspecific peroxygenase Cytochrome P450 Biosensors Phenolic substances 



The authors gratefully acknowledge the financial support of BMBF (0311993) of Germany. This work is a part of UniCat, the Cluster of Excellence in the field of catalysis coordinated by TU Berlin and financially supported by Deutsche Forschungsgemeinschaft within the framework of the German Excellence Initiative (EXC 314).


  1. 1.
    Gauglitz G (2010) Anal Bioanal Chem 398:2363–2372CrossRefGoogle Scholar
  2. 2.
    Renneberg R (2009) Bioanalytik für Einsteiger. Spektrum Akademischer Verlag, HeidelbergCrossRefGoogle Scholar
  3. 3.
    Heller A, Feldman B (2008) Chem Rev 108:2482–2505CrossRefGoogle Scholar
  4. 4.
    Renneberg R, Lisdat F (2008) Advances in biochemical engineering/biotechnology, vol 109. Springer, BerlinGoogle Scholar
  5. 5.
    Willner I, Katz E (2005) Bioelectronics. Wiley, WeinheimCrossRefGoogle Scholar
  6. 6.
    Wollenberger U, Renneberg R, Bier F, Scheller F (2003) Analytische Biochemie-Eine praktische Einführung in das Messen mit Biomolekülen. Wiley, WeinheimGoogle Scholar
  7. 7.
    Joo H, Lin Z, Arnold FH (1999) Nature 399:670–673CrossRefGoogle Scholar
  8. 8.
    Hofrichter M, Ullrich R (2010) New trends in fungal biooxidation. The Mycota,volume X, industrial applications, 2nd edn. Springer, BerlinGoogle Scholar
  9. 9.
    Torres E, Ayala M (2010) Biocatalysis based on heme peroxidases: peroxidases as potential industrial biocatalysts. Springer, BerlinGoogle Scholar
  10. 10.
    Hofrichter M, Ullrich R, Pecyna MCL, Lundell T (2010) Appl Microbiol Biotechnol 87:871–897CrossRefGoogle Scholar
  11. 11.
    Gröbe G, Ulrich R, Pecyna M, Friedrich S, Hofrichter M, Schreibner K (2011) AMB Express 1:31Google Scholar
  12. 12.
    Peng L, Wollenberger U, Kinne M, Hofrichter M, Ulrich R, Schreibner K, Fischer A, Scheller FW (2010) Biosens Bioelectron 26:1432–1436CrossRefGoogle Scholar
  13. 13.
    Ullrich R, Nuske J, Scheibner K, Spantzel J, Hofrichter M (2004) Appl Environ Microbiol 70:4575–4581CrossRefGoogle Scholar
  14. 14.
    Bonnard C, Papermaster DS, Kiraehenbuhl J-P (1984) The streptavidin-biotin bridge technique: applications in light and electron microscope immunocytochemistry. In: Polak JM, Varndell IM (eds) Immunolabeling for electron microscopy. Elsevier, New YorkGoogle Scholar
  15. 15.
    Yarman A, Nagel T, Gajovic-Eichelmann N, Fischer A, Wollenberger U, Scheller FW (2011) Electroanalysis 23:611–618Google Scholar
  16. 16.
    Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Biosens Bioelectron 20:2408–2423CrossRefGoogle Scholar
  17. 17.
    Mak LH, Sadeghi SJ, Fantuzzi A, Gilardi G (2010) Anal Chem 82:5357–5362CrossRefGoogle Scholar
  18. 18.
    Shumyantseva VV, Bulko TV, Kumetsova GP, Lisitsa AV, Ponomarenko EA, Karuzina II, Archakov AI (2007) Biochem Mosc 72:658–663CrossRefGoogle Scholar
  19. 19.
    Krishnan S, Wasalathanthri D, Zhao LL, Schenkman JB, Rusling JF (2011) JACS 133:1459–1465CrossRefGoogle Scholar
  20. 20.
    Osteryoung JG, Osteryoung RA (1985) Anal Chem 57:101A–106ACrossRefGoogle Scholar
  21. 21.
    Zhang Z, Nassar A-EF, Lu Z, Schenkman JB, Rusling JF (1997) J Chem Soc, Faraday Trans 93:1769–1774CrossRefGoogle Scholar
  22. 22.
    Jeuken LJC, McEvoy JP, Armstrong FA (2002) J Phys Chem B 106:2304–2313CrossRefGoogle Scholar
  23. 23.
    Laviron E (1979) J Electroanal Chem 101:19–28CrossRefGoogle Scholar
  24. 24.
    Kane SA, Iwuoha EI, Smyth MR (1998) Analyst 123:2001–2006CrossRefGoogle Scholar
  25. 25.
    Yang S, Li Y, Jiang X, Chen Z, Lin X (2006) Sens Actuators B 114:774–780CrossRefGoogle Scholar
  26. 26.
    Sun W, Jiao K, Zhang S, Zhang C, Zhang H (2001) Anal Chim Acta 434:43–50CrossRefGoogle Scholar
  27. 27.
    Zhang S, Jiao K, Chen H (1999) Anal Lett 32:1761–1773CrossRefGoogle Scholar
  28. 28.
    Wollenberger U, Lisdat F, Rose A, Streffer K (2008) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, New YorkGoogle Scholar
  29. 29.
    Munteanu FD, Lindgren A, Emnéus J, Gorton L, Ruzgas T, Csöregi E, Ciucu A, van Huystee RB, Gazaryan IG, Lagrimini LM (1998) Anal Chem 70:2596–2600CrossRefGoogle Scholar
  30. 30.
    González-Sánchez MI, Rubio-Retama J, López-Cabarcos E, Valero E (2011) Biosens Bioelectron 26:1883–1889CrossRefGoogle Scholar
  31. 31.
    Ameer Q, Adeloju SB (2009) Sens Actuators B 140:5–11CrossRefGoogle Scholar
  32. 32.
    Topcu Sulak M, Erhan E, Keskinler B (2010) Appl Biochem Biotechnol 160:856–867CrossRefGoogle Scholar
  33. 33.
    Erdem A, Pabuccuoglu A, Meric B, Kerman K, Ozsoz M (2000) Turk J Med Sci 30:349–354Google Scholar
  34. 34.
    Marko-Varga G, Emnéus J, Gorton L, Ruzgas T (1999) TrAC Trends Anal Chem 14:319–328Google Scholar
  35. 35.
    Zhang Y, Zeng GM, Tang L, Huang DL, Jiang XY, Chen YN (2007) Biosens Bioelectron 22:2121–2126CrossRefGoogle Scholar
  36. 36.
    Tan Y, Guo X, Zhang J, Kan J (2010) Biosens Bioelectron 25:1681–1687CrossRefGoogle Scholar
  37. 37.
    Rosatto SS, Sotomayor PT, Kubota LT (2002) Gushikem Y 47:4451–4458Google Scholar
  38. 38.
    Liu X, Luo L, Ding Y, Xu Y (2011) Analyst 136:696–701CrossRefGoogle Scholar
  39. 39.
    Serra B, Benito B, Agüí L, Reviejo AJ, Pingarrón JM (2001) Electroanalysis 13:693–700CrossRefGoogle Scholar
  40. 40.
    Topcu S, Sezginturk MT, Dinckaya E (2004) Biosens Bioelectron 20:592–597CrossRefGoogle Scholar
  41. 41.
    Navaratne A, Lin MS, Rechnitz GA (1990) Anal Chim Acta 237:107–113CrossRefGoogle Scholar
  42. 42.
    Fatibello-Filho O, Lupetti KO, Vieira IC (2001) Talanta 55:685–692CrossRefGoogle Scholar
  43. 43.
    Yarman A, Badalyan A, Gajovic-Eichelmann N, Wollenberger U, Scheller FW Biosens Bioelectron (in press) doi: 10.1016/j.bios.2011.09.004

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Aysu Yarman
    • 1
  • Glenn Gröbe
    • 2
  • Bettina Neumann
    • 1
  • Mathias Kinne
    • 3
  • Nenad Gajovic-Eichelmann
    • 1
  • Ulla Wollenberger
    • 4
  • Martin Hofrichter
    • 3
  • René Ullrich
    • 3
  • Katrin Scheibner
    • 2
  • Frieder W. Scheller
    • 1
    • 4
  1. 1.Fraunhofer Institute for Biomedical Engineering IBMTPotsdamGermany
  2. 2.Department of BiotechnologyLausitz University of Applied SciencesSenftenbergGermany
  3. 3.Unit of Environmental BiotechnologyInternational Graduate School of ZittauZittauGermany
  4. 4.Institute of Biochemistry and BiologyUniversity of Potsdam Karl-Liebknecht-Str. 24–25GolmGermany

Personalised recommendations