Analytical and Bioanalytical Chemistry

, Volume 402, Issue 8, pp 2633–2643 | Cite as

On the mechanism of extractive electrospray ionization (EESI) in the dual-spray configuration

  • Rui Wang
  • Arto Juhani Gröhn
  • Liang Zhu
  • Rolf Dietiker
  • Karsten Wegner
  • Detlef Günther
  • Renato ZenobiEmail author
Original Paper


Dual-spray extractive electrospray ionization (EESI) mass spectrometry as a versatile analytical technique has attracted much interest due to its advantages over conventional electrospray ionization (ESI). The crucial difference between EESI and ESI is that in the EESI process, the analytes are introduced in nebulized form via a neutral spray and ionized by collisions with the charged droplets from an ESI source formed by spraying pure solvent. However, the mechanism of the droplet–droplet interactions in the EESI process is still not well understood. For example, it is unclear which type of droplet–droplet interaction is dominant: bounce, coalescence, disruption, or fragmentation? In this work, droplet–droplet interaction was investigated in detail based on a theoretical model. Phase Doppler anemometry (PDA) was employed to investigate the droplet behavior in the EESI plume and provide the experimental data (droplet size and velocity) necessary for theoretical analysis. Furthermore, numerical simulations were performed to clarify the influence of the sheath gas flow on the EESI process. No coalescence between the droplets in the ESI spray and the droplets in the sample spray was observed using various geometries and sample flow rates. Theoretical analysis, together with the PDA results, suggests that droplet fragmentation may be the dominant type of droplet–droplet interaction in the EESI. The interaction time between the ESI droplet and the sample droplet was estimated to be <5 μs. This work gives a clear picture of droplet–droplet interactions in the dual-spray EESI process and detailed information for the optimization of this method for future applications that require higher sensitivity.


Mass spectrometry Extractive electrospray Ionization mechanisms 



We would like to thank Mr. Lukas Meier, Dr. Thomas Schmid, and Dr. Waisiang Law for their kind help and nice discussion. This project was supported by the Swiss National Science Foundation (grant no. 200020-124663).


  1. 1.
    Chen HW, Venter A, Cooks RG (2006) Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem Commun 19:2042–2044CrossRefGoogle Scholar
  2. 2.
    Marquez CA, Wang HY, Fabbretti F, Metzger JO (2008) Electron-transfer-catalyzed dimerization of trans-anethole: detection of the distonic tetramethylene radical cation intermediate by extractive electrospray iIonization mass spectrometry. J Am Chem Soc 130(51):17208–17209CrossRefGoogle Scholar
  3. 3.
    Chen HW, Yang SP, Li M, Hu B, Li JQ, Wang J (2010) Sensitive detection of native proteins using extractive electrospray ionization mass spectrometry. Angew Chem-Int Edit 49(17):3053–3056CrossRefGoogle Scholar
  4. 4.
    Luo MB, Hu B, Zhang X, Peng DF, Chen HW, Zhang LL, Huan YF (2010) Extractive electrospray ionization mass spectrometry for sensitive detection of uranyl species in natural water samples. Anal Chem 82(1):282–289CrossRefGoogle Scholar
  5. 5.
    Gu HW, Chen HW, Pan ZZ, Jackson AU, Talaty N, Xi BW, Kissinger C, Duda C, Mann D, Raftery D, Cooks RG (2007) Monitoring diet effects via biofluids and their implications for metabolomics studies. Anal Chem 79(1):89–97CrossRefGoogle Scholar
  6. 6.
    Miao ZX, Chen H (2009) Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J Am Soc Mass Spectrom 20(1):10–19CrossRefGoogle Scholar
  7. 7.
    Iribarne JV, Thomson BA (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64(6):2287–2294CrossRefGoogle Scholar
  8. 8.
    Dole M, Mack LL, Hines RL (1968) Molecular beams of macroions. J Chem Phys 49(5):2240–2249CrossRefGoogle Scholar
  9. 9.
    Law WS, Wang R, Hu B, Berchtold C, Meier L, Chen HW, Zenobi R (2010) On the mechanism of extractive electrospray ionization. Anal Chem 82(11):4494–4500CrossRefGoogle Scholar
  10. 10.
    Ding JH, Yang SP, Liang DP, Chen HW, Wu ZZ, Zhang LL, Ren YL (2009) Development of extractive electrospray ionization ion trap mass spectrometry for in vivo breath analysis. Analyst 134(10):2040–2050CrossRefGoogle Scholar
  11. 11.
    Gamez G, Zhu LA, Disko A, Chen HW, Azov V, Chingin K, Kramer G, Zenobi R (2011) Real-time, in vivo monitoring and pharmacokinetics of valproic acid via a novel biomarker in exhaled breath. Chem Commun 47(17):4884–4886CrossRefGoogle Scholar
  12. 12.
    Zhu L, Gamez G, Chen HW, Chingin K, Zenobi R (2009) Rapid detection of melamine in untreated milk and wheat gluten by ultrasound-assisted extractive electrospray ionization mass spectrometry (EESI-MS). Chem Commun 5:559–561CrossRefGoogle Scholar
  13. 13.
    Yang SP, Ding JH, Zheng J, Hu B, Li JQ, Chen HW, Zhou ZQ, Qiao XL (2009) Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal Chem 81(7):2426–2436CrossRefGoogle Scholar
  14. 14.
    Law WS, Chen HW, Ding JH, Yang SP, Zhu L, Gamez G, Chingin K, Ren YL, Zenobi R (2009) Rapid characterization of complex viscous liquids at the molecular level. Angew Chem-Int Edit 48(44):8277–8280CrossRefGoogle Scholar
  15. 15.
    Ding JH, Gu HW, Yang SP, Li M, Li JQ, Chen HW (2009) Selective detection of eiethylene glycol in toothpaste products using neutral desorption reactive extractive electrospray ionization tandem mass spectrometry. Anal Chem 81(20):8632–8638CrossRefGoogle Scholar
  16. 16.
    Law WS, Chen HW, Balabin R, Berchtold C, Meier L, Zenobi R (2010) Rapid fingerprinting and classification of extra virgin olive oil by microjet sampling and extractive electrospray ionization mass spectrometry. Analyst 135(4):773–778CrossRefGoogle Scholar
  17. 17.
    Orme M (1997) Experiments on droplet collisions, bounce, coalescence and disruption. Prog Energy Combust Sci 23(1):65–79CrossRefGoogle Scholar
  18. 18.
    Gao TC, Chen RH, Pu JY, Lin TH (2005) Collision between an ethanol drop and a water drop. Exp Fluids 38(6):731–738CrossRefGoogle Scholar
  19. 19.
    Gomez A, Tang KQ (1994) Charge and fission of droplets in electrostatic sprays. Phys Fluids 6(1):404–414CrossRefGoogle Scholar
  20. 20.
    Tang K, Gomez A (1994) On the structure of an electrostatic spray of monodisperse droplets. Phys Fluids 6(7):2317–2332CrossRefGoogle Scholar
  21. 21.
    Olumee Z, Callahan JH, Vertes A (1998) Droplet dynamics changes in electrostatic sprays of methanol–water mixtures. J Phys Chem A 102(46):9154–9160CrossRefGoogle Scholar
  22. 22.
    Venter A, Sojka PE, Cooks RG (2006) Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal Chem 78(24):8549–8555CrossRefGoogle Scholar
  23. 23.
    Heine MC (2007) Particle dynamics at high aerosol concentrations and production rates. ETHZ, ZurichGoogle Scholar
  24. 24.
    Heine MC, Pratsinis SE (2005) Droplet and particle dynamics during flame spray synthesis of nanoparticles. Ind Eng Chem Res 44(16):6222–6232CrossRefGoogle Scholar
  25. 25.
    Hindes WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New YorkGoogle Scholar
  26. 26.
    Hardalupas Y, Liu CH, Whitelaw JH (1994) Experiments with disk stabilized kerosene-fuelled flames. Combust Sci Technol 97(1–3):157–191CrossRefGoogle Scholar
  27. 27.
    Issac K, Missoum A, Drallmeier J, Johnston A (1994) Atomization experiments in a coaxial coflowing Mach 1.5 flow. AIAA J 32(8):1640–1646CrossRefGoogle Scholar
  28. 28.
    Mackay GDM, Mason SG (1963) The gravity approach and coalescence of fluid drops at liquid interfaces. CanJChemEng 41:203–212Google Scholar
  29. 29.
    Dizechi M, Marschall E (1982) Viscosity of some binary and ternary liquid mixtures. J Chem Eng Data 27(3):358–363CrossRefGoogle Scholar
  30. 30.
    Vazquez G, Alvarez E, Navaza JM (1995) Surface tension of alcohol + water from 20 to 50°C. J Chem Eng Data 40(3):611–614CrossRefGoogle Scholar
  31. 31.
    Cheng CS, Li YQ, Zhao LF (2009) Investigation of improving the model for binary collision regimes of hydrocarbon droplets. In: Wenbin H, Xin L (eds) 2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20 December 2009, IEEEGoogle Scholar
  32. 32.
    Gunn R (1965) Collision characteristics of freely falling water drops. Science 150(3697):695–701CrossRefGoogle Scholar
  33. 33.
    Low TB, List R (1982) Collision, coalescence and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J Atmos Sci 39(7):1591–1606CrossRefGoogle Scholar
  34. 34.
    Braziers PR, Latham J, Jennings SG (1972) The interaction of falling water drops: coalescence. Proc R Soc Lond A 326(1566):393–408CrossRefGoogle Scholar
  35. 35.
    Gu HW, Hu B, Li JQ, Yang SP, Han J, Chen HW (2010) Rapid analysis of aerosol drugs using nano extractive electrospray ionization tandem mass spectrometry. Analyst 135(6):1259–1267CrossRefGoogle Scholar
  36. 36.
    Peng Z, Law CK (2011) An analysis of head-on droplet collision with large deformation in gaseous medium. Phys Fluids 23(4):042102CrossRefGoogle Scholar
  37. 37.
    Lamb H (ed) (1932) Hydrodynamics, 6th edn. Dover, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Rui Wang
    • 1
  • Arto Juhani Gröhn
    • 2
  • Liang Zhu
    • 1
  • Rolf Dietiker
    • 1
  • Karsten Wegner
    • 2
  • Detlef Günther
    • 1
  • Renato Zenobi
    • 1
    Email author
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland
  2. 2.Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland

Personalised recommendations