Analytical and Bioanalytical Chemistry

, Volume 402, Issue 2, pp 861–869 | Cite as

Elemental fingerprint profile of beer samples constructed using 14 elements determined by inductively coupled plasma–mass spectrometry (ICP-MS): multivariation analysis and potential application to forensic sample comparison

  • Nazia Mahmood
  • Nicolas Petraco
  • Yi HeEmail author
Original Paper


Determination of elemental fingerprint profile of 40 commercial beer samples was performed using inductively coupled plasma–mass spectrometry combined with principal component analysis and receiver operating characteristic (ROC) analysis. Fourteen trace elements, 51V, 52Cr, 59Co, 60Ni, 75As, 82Se, 95Mo, 111Cd, 115In, 121Sb, 133Cs, 208Pb, 209Bi, and 238U, were monitored. All 40 beer samples are distinguishable by using the proposed method. ROC analysis showed that individual beer samples can be correctly identified via the magnitude of its correlation coefficient with respect to the other beers with low false positive rate. The obtained results suggested that the elemental fingerprint technique is feasible for sample differentiation and comparison.


Elemental fingerprint Inductively coupled plasma-mass spectrometry (ICP-MS) Beer Principal component analysis (PCA) Receiver operating characteristic (ROC) 



A U.S. Department of Education Title V grant for institutional development provided to John Jay College and the PRISM program at John Jay College was gratefully acknowledged.


  1. 1.
    Watling RJ (1998) J Anal At Spectrom 13:917–926CrossRefGoogle Scholar
  2. 2.
    Watling RJ, Lynch BF, Herring D (1997) J Anal At Spectrom 12:195–203CrossRefGoogle Scholar
  3. 3.
    Husted S, Mikkelsen BF, Jensen J, Nielsen NE (2004) Anal Bioanal Chem 378:171–182CrossRefGoogle Scholar
  4. 4.
    Alcazar A, Pablos F, Martin MJ, Gonzalez AG (2002) Talanta 57:45–52CrossRefGoogle Scholar
  5. 5.
    Gonzalvez A, Llorens A, Cervera ML, Armenta S, de la Guardia M (2009) Food Chem 112:26–34CrossRefGoogle Scholar
  6. 6.
    Taylor VF, Longerich HP, Greenough JD (2003) J Agric Food Chem 51:856–860CrossRefGoogle Scholar
  7. 7.
    Jakubowski N, Brandt R, Stuewer D, Eschnauer HR, Gortges S (1999) Fresenius J Anal Chem 364:424–428CrossRefGoogle Scholar
  8. 8.
    Yuan XF, Shi JY, Yang YQ, Luan J, Gao JJ, Wang YW (2010) Biol Trace Elem Res 135:304–313CrossRefGoogle Scholar
  9. 9.
    Chen YX, Yu MG, Xu J, Chen XC, Shi JY (2009) J Sci Food Agric 89:2350–2355CrossRefGoogle Scholar
  10. 10.
    Crittenden RG, Andrew AS, LeFournour M, Young MD, Middleton H, Stockmann R (2007) Int Dairy J 17:421–428CrossRefGoogle Scholar
  11. 11.
    Ariyama K, Aoyama Y, Mochizuki A, Homura Y, Kadokura M, Yasui A (2007) J Agric Food Chem 55:347–354CrossRefGoogle Scholar
  12. 12.
    Costas-Rodriguez M, Lavilla I, Bendicho C (2011) Anal Chim Acta 664:121–128CrossRefGoogle Scholar
  13. 13.
    Brunner M, Katona R, Stefanka Z, Prohaska T (2011) Eur Food Res Technol 231:623–634CrossRefGoogle Scholar
  14. 14.
    Gallo JM, Almirall JR (2009) Forensic Sci Int 190:52–57CrossRefGoogle Scholar
  15. 15.
    Latkoczy C, Becker S, Ducking M, Gunther D, Hoogewerff JA, Almirall JR, Buscaglia J, Dobney A, Koons RD, Montero S, van der Peijl GJQ, Stoecklein WRS, Trejos T, Watling JR, Zdanowicz VS (2005) J Forensic Sci 50:1327–1341CrossRefGoogle Scholar
  16. 16.
    Flynn J, Stoilovic M, Lennard C, Prior L, Kobus H (1998) Forensic Sci Int 97:21–36CrossRefGoogle Scholar
  17. 17.
    Sano T, Suzuki S (2009) Forensic Sci Int 192:E27–E32CrossRefGoogle Scholar
  18. 18.
    Jantzi SC, Almirall JR Anal Bioanal Chem 400:3341–51Google Scholar
  19. 19.
    McIntee E, Viglino E, Rinke C, Kumor S, Ni LQ, Sigman ME Spectrochimica Acta Part B-Atomic Spectroscopy 65:542–48Google Scholar
  20. 20.
    Hobbs AL, Almirall JR (2003) Anal Bioanal Chem 376:1265–1271CrossRefGoogle Scholar
  21. 21.
    Schenk ER, Almirall JR Applied Optics 49:C153-C60Google Scholar
  22. 22.
    Trejos T, Flores A, Almirall JR Spectrochimica Acta Part B-Atomic Spectroscopy 65:884–95Google Scholar
  23. 23.
    Skoog DA, Holler FJ, Nieman TA (1998) Principles of instrumental analysis. Thomson, USAGoogle Scholar
  24. 24.
    Egan WJ, Morgan SL, Bartick EG, Merrill RA, Taylor HJ (2003) Anal Bioanal Chem 376:1279–1285CrossRefGoogle Scholar
  25. 25.
    Egan WJ, Galipo RC, Kochanowski BK, Morgan SL, Bartick EG, Miller ML, Ward DC, Mothershead RF (2003) Anal Bioanal Chem 376:1286–1297CrossRefGoogle Scholar
  26. 26.
    Jolliffe I (2004) Principal component analysis. Springer, New YorkGoogle Scholar
  27. 27.
    Rencher AC (2002) Methods of multivariate analysis. Wiley, HobokenCrossRefGoogle Scholar
  28. 28.
    Petraco NDK, Gil M, Pizzola PA, Kubic TA (2008) J Forensic Sci 53:1092–1101CrossRefGoogle Scholar
  29. 29.
    The R Project for Statistical Computing
  30. 30.
    Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca RatonCrossRefGoogle Scholar
  31. 31.
    Dekking FM, Kraaikamp C, Lopuhaa HP, Meester LE (2005) A modern introduction to probability and statistics. Springer, New YorkGoogle Scholar
  32. 32.
    Esseiva P, Gaste L, Alvarez D, Anglada F (2011) Forensic Sci Int 207:27–34CrossRefGoogle Scholar
  33. 33.
    Krzanowski WJ, Hand DJ (2009) ROC curves for continuous data. CRC, Boca RatonCrossRefGoogle Scholar
  34. 34.
    Brown C, Davis H (2006) Chemom Intell Lab Syst 80:24–38CrossRefGoogle Scholar
  35. 35.
    Wyrzykowska B, Szymczyk K, Ichichashi H, Falandysz J, Skwarzec B, Yamasaki S (2001) J Agric Food Chem 49:3425–3431CrossRefGoogle Scholar
  36. 36.
    Herce-Pagliai C, Gonzalez G, Camean AM, Repetto M (1999) Food Addit Contam 16:267–271CrossRefGoogle Scholar
  37. 37.
    Donadini G, Spalla S, Beone GM (2008) J Inst Brew 114:283–288Google Scholar
  38. 38.
    Sahota RS, Morgan SL (1992) Anal Chem 64:2383–2392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Sciences, John Jay College of Criminal JusticeThe City University of New YorkNew YorkUSA

Personalised recommendations